import os import time import spaces import cv2 import gradio as gr import torch from basicsr.archs.srvgg_arch import SRVGGNetCompact from realesrgan.utils import RealESRGANer from basicsr.archs.rrdbnet_arch import RRDBNet os.system("pip freeze") upsampler_map = {} half = True if torch.cuda.is_available() else False if not os.path.exists('realesr-general-x4v3.pth'): os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .") model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') model_path = 'realesr-general-x4v3.pth' upsampler_map['RealESR-General-x4v3'] = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) if not os.path.exists('RealESRGAN_x2plus.pth'): os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth -P .") model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2) model_path = 'RealESRGAN_x2plus.pth' upsampler_map['RealESRGAN_x2plus'] = RealESRGANer(scale=2, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) os.makedirs('output', exist_ok=True) @spaces.GPU(duration=10) def enhance( img_path:str, version:str='x4v3', scale:int=2, ): run_task_time = 0 time_cost_str = '' run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) extension = os.path.splitext(os.path.basename(img_path))[1] img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) if len(img.shape) == 3 and img.shape[2] == 4: img_mode = 'RGBA' elif len(img.shape) == 2: # for gray inputs img_mode = None img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) else: img_mode = None h, w = img.shape[0:2] if h < 300: img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) if version == 'x4v3': upsampler = upsampler_map['RealESR-General-x4v3'] elif version == 'x4plus': upsampler = upsampler_map['RealESRGAN_x4plus'] elif version == 'x2plus': upsampler = upsampler_map['RealESRGAN_x2plus'] elif version == 'net_x4plus': upsampler = upsampler_map['RealESRNet_x4plus'] output, _ = upsampler.enhance(img, outscale=scale) if img_mode == 'RGBA': # RGBA images should be saved in png format extension = 'png' else: extension = 'jpg' save_path = f'output/out.{extension}' cv2.imwrite(save_path, output) output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) return output, save_path, time_cost_str def get_time_cost(run_task_time, time_cost_str): now_time = int(time.time()*1000) if run_task_time == 0: time_cost_str = 'start' else: if time_cost_str != '': time_cost_str += f'-->' time_cost_str += f'{now_time - run_task_time}' run_task_time = now_time return run_task_time, time_cost_str def create_demo() -> gr.Blocks: with gr.Blocks() as demo: with gr.Row(): with gr.Column(): version = gr.Radio(['x4v3', 'x4plus', 'x2plus', 'net_x4plus'], label="Version", value='x4v3') scale = gr.Number(label="Rescaling factor", value=2) with gr.Column(): g_btn = gr.Button("Enhance") with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image", type="filepath") with gr.Column(): restored_image = gr.Image(label="Restored Image", type="numpy", interactive=False) download_path = gr.File(label="Download the output image", interactive=False) restored_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False) g_btn.click( fn=enhance, inputs=[input_image, version, scale], outputs=[restored_image, download_path, restored_cost], ) return demo