Spaces:
Sleeping
Sleeping
File size: 7,908 Bytes
3cff715 33e257e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import gradio as gr
import math
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
from transformers import TrainingArguments, Trainer
from transformers import T5Tokenizer, T5ForConditionalGeneration
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import numpy as np
import evaluate
import nltk
from nltk.corpus import stopwords
import subprocess
import sys
from transformers import T5Tokenizer, DataCollatorForSeq2Seq
from transformers import T5ForConditionalGeneration, Seq2SeqTrainingArguments, Seq2SeqTrainer
from transformers import DataCollatorWithPadding, DistilBertTokenizerFast
from transformers import TrainingArguments
from transformers import (
BertModel,
BertTokenizerFast,
Trainer,
EvalPrediction
)
nltk.download("punkt", quiet=True)
metric = evaluate.load("rouge")
# Global Parameters
L_RATE = 3e-4
BATCH_SIZE = 8
PER_DEVICE_EVAL_BATCH = 4
WEIGHT_DECAY = 0.01
SAVE_TOTAL_LIM = 3
NUM_EPOCHS = 10
# Set up training arguments
training_args = Seq2SeqTrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
learning_rate=L_RATE,
per_device_train_batch_size=BATCH_SIZE,
per_device_eval_batch_size=PER_DEVICE_EVAL_BATCH,
weight_decay=WEIGHT_DECAY,
save_total_limit=SAVE_TOTAL_LIM,
num_train_epochs=NUM_EPOCHS,
predict_with_generate=True,
push_to_hub=False
)
model_id = "google/flan-t5-base"
tokenizer = T5Tokenizer.from_pretrained(model_id)
# tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
# metric = evaluate.load("accuracy")
def tokenize_function(examples):
return tokenizer(examples["stem"], padding="max_length", truncation=True)
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# def compute_metrics(eval_pred):
# logits, labels = eval_pred
# predictions = np.argmax(logits, axis=-1)
# metric = evaluate.load("accuracy")
# return metric.compute(predictions=predictions, references=labels)
def compute_metrics(eval_preds):
preds, labels = eval_preds
# decode preds and labels
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# rougeLSum expects newline after each sentence
decoded_preds = ["\n".join(nltk.sent_tokenize(pred.strip())) for pred in decoded_preds]
decoded_labels = ["\n".join(nltk.sent_tokenize(label.strip())) for label in decoded_labels]
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
return result
def training():
dataset_id = "tomasmcz/word2vec_analogy"
# dataset_id = "relbert/scientific_and_creative_analogy"
# dataset_sub = "Quadruples_Kmiecik_random_split"
print("GETTING DATASET")
dataset = load_dataset(dataset_id)
# dataset = dataset["train"]
# tokenized_datasets = dataset.map(tokenize_function, batched=True)
print(dataset)
print(f"- The {dataset_id} dataset has {dataset['train'].num_rows} examples.")
print(f"- Each example is a {type(dataset['train'][0])} with a {type(dataset['train'][0])} as value.")
print(f"- Examples look like this: {dataset['train'][0]}")
# for i in dataset["train"]:
# print(i["AB"], "to", i["CD"], "is", i["label"])
dataset = dataset["train"].train_test_split(test_size=0.3)
# We prefix our tasks with "answer the question"
prefix = "Please answer this question: "
def preprocess_function(examples):
"""Add prefix to the sentences, tokenize the text, and set the labels"""
# The "inputs" are the tokenized answer:
inputs = []
# print(examples)
# inputs = [prefix + doc for doc in examples["question"]]
for doc in examples['word_a']:
# print("THE DOC IS:", doc)
# print("THE DOC IS:", examples[i]['AB'], examples[i]['CD'], examples[i]['label'])
prompt = f"{prefix}{doc} is to "
inputs.append(prompt)
# inputs = [prefix + doc for doc in examples["question"]]
for indx, doc in enumerate(examples["word_b"]):
prompt = f"{doc} as "
inputs[indx] += prompt
for indx, doc in enumerate(examples["word_c"]):
prompt = f"{doc} is to ___."
inputs[indx] += prompt
model_inputs = tokenizer(inputs, max_length=128, truncation=True)
# print(examples["label"], type(examples["label"]))
# The "labels" are the tokenized outputs:
labels = tokenizer(text_target=examples["word_d"],
max_length=512,
truncation=True)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
# Map the preprocessing function across our dataset
tokenized_dataset = dataset.map(preprocess_function, batched=True)
print("END DATALOADER")
# print(train_examples)
embeddings = finetune(tokenized_dataset)
return 0
def finetune(dataset):
# model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
# model_id = "sentence-transformers/all-MiniLM-L6-v2"
model_id = "google/flan-t5-base"
# model_id = "distilbert-base-uncased"
# tokenizer = DistilBertTokenizerFast.from_pretrained(model_id)
tokenizer = T5Tokenizer.from_pretrained(model_id)
model = T5ForConditionalGeneration.from_pretrained(model_id)
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)
device = torch.device('cuda:0')
model = model.to(device)
# training_args = TrainingArguments(output_dir="test_trainer")
# USE THIS LINK
# https://huggingface.co/blog/how-to-train-sentence-transformers
# train_loss = losses.MegaBatchMarginLoss(model=model)
# ds_train, ds_valid = dataset.train_test_split(test_size=0.2, seed=42)
print("BEGIN FIT")
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
# evaluation_strategy="no"
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics
)
# model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=10)
trainer.train()
# model.save("flan-analogies")
# model.save_to_hub("smhavens/bert-base-analogies")
# accuracy = compute_metrics(eval, metric)
return 0
def greet(name):
return "Hello " + name + "!!"
def check_answer(guess:str):
global guesses
global answer
guesses.append(guess)
output = ""
for guess in guesses:
output += ("- " + guess + "\n")
output = output[:-1]
if guess.lower() == answer.lower():
return "Correct!", output
else:
return "Try again!", output
def main():
print("BEGIN")
word1 = "Black"
word2 = "White"
word3 = "Sun"
global answer
answer = "Moon"
global guesses
training()
if __name__ == "__main__":
main() |