|
import os |
|
import modal |
|
|
|
LOCAL=True |
|
|
|
if LOCAL == False: |
|
stub = modal.Stub() |
|
hopsworks_image = modal.Image.debian_slim().pip_install(["hopsworks","joblib","seaborn","sklearn","dataframe-image"]) |
|
@stub.function(image=hopsworks_image, schedule=modal.Period(days=1), secret=modal.Secret.from_name("jim-hopsworks-ai")) |
|
def f(): |
|
g() |
|
|
|
def g(): |
|
import pandas as pd |
|
import hopsworks |
|
import joblib |
|
import datetime |
|
from PIL import Image |
|
from datetime import datetime |
|
import dataframe_image as dfi |
|
from sklearn.metrics import confusion_matrix |
|
from matplotlib import pyplot |
|
import seaborn as sns |
|
import requests |
|
|
|
project = hopsworks.login() |
|
fs = project.get_feature_store() |
|
|
|
mr = project.get_model_registry() |
|
model = mr.get_model("iris_modal", version=1) |
|
model_dir = model.download() |
|
model = joblib.load(model_dir + "/iris_model.pkl") |
|
|
|
feature_view = fs.get_feature_view(name="iris_modal", version=1) |
|
batch_data = feature_view.get_batch_data() |
|
|
|
y_pred = model.predict(batch_data) |
|
|
|
flower = y_pred[y_pred.size-1] |
|
flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + flower + ".png" |
|
print("Flower predicted: " + flower) |
|
img = Image.open(requests.get(flower_url, stream=True).raw) |
|
img.save("./latest_iris.png") |
|
dataset_api = project.get_dataset_api() |
|
dataset_api.upload("./latest_iris.png", "Resources/images", overwrite=True) |
|
|
|
iris_fg = fs.get_feature_group(name="iris_modal", version=1) |
|
df = iris_fg.read() |
|
|
|
label = df.iloc[-1]["variety"] |
|
label_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + label + ".png" |
|
print("Flower actual: " + label) |
|
img = Image.open(requests.get(label_url, stream=True).raw) |
|
img.save("./actual_iris.png") |
|
dataset_api.upload("./actual_iris.png", "Resources/images", overwrite=True) |
|
|
|
monitor_fg = fs.get_or_create_feature_group(name="iris_predictions", |
|
version=1, |
|
primary_key=["datetime"], |
|
description="Iris flower Prediction/Outcome Monitoring" |
|
) |
|
|
|
now = datetime.now().strftime("%m/%d/%Y, %H:%M:%S") |
|
data = { |
|
'prediction': [flower], |
|
'label': [label], |
|
'datetime': [now], |
|
} |
|
monitor_df = pd.DataFrame(data) |
|
monitor_fg.insert(monitor_df, write_options={"wait_for_job" : False}) |
|
|
|
history_df = monitor_fg.read() |
|
|
|
|
|
history_df = pd.concat([history_df, monitor_df]) |
|
|
|
|
|
df_recent = history_df.tail(5) |
|
dfi.export(df_recent, './df_recent.png', table_conversion = 'matplotlib') |
|
dataset_api.upload("./df_recent.png", "Resources/images", overwrite=True) |
|
|
|
predictions = history_df[['prediction']] |
|
labels = history_df[['label']] |
|
|
|
|
|
print("Number of different flower predictions to date: " + str(predictions.value_counts().count())) |
|
if predictions.value_counts().count() == 3: |
|
results = confusion_matrix(labels, predictions) |
|
|
|
df_cm = pd.DataFrame(results, ['True Setosa', 'True Versicolor', 'True Virginica'], |
|
['Pred Setosa', 'Pred Versicolor', 'Pred Virginica']) |
|
|
|
cm = sns.heatmap(df_cm, annot=True) |
|
fig = cm.get_figure() |
|
fig.savefig("./confusion_matrix.png") |
|
dataset_api.upload("./confusion_matrix.png", "Resources/images", overwrite=True) |
|
else: |
|
print("You need 3 different flower predictions to create the confusion matrix.") |
|
print("Run the batch inference pipeline more times until you get 3 different iris flower predictions") |
|
|
|
|
|
if __name__ == "__main__": |
|
if LOCAL == True : |
|
g() |
|
else: |
|
with stub.run(): |
|
f() |
|
|
|
|