import torch, os, traceback, sys, warnings, shutil, numpy as np import gradio as gr import librosa import asyncio import rarfile import edge_tts import yt_dlp import ffmpeg import gdown import subprocess import wave import soundfile as sf from scipy.io import wavfile from datetime import datetime from urllib.parse import urlparse from mega import Mega from flask import Flask, request, jsonify, send_file import base64 import tempfile import os import werkzeug from pydub import AudioSegment import uuid app = Flask(__name__) now_dir = os.getcwd() tmp = os.path.join(now_dir, "TEMP") shutil.rmtree(tmp, ignore_errors=True) os.makedirs(tmp, exist_ok=True) os.environ["TEMP"] = tmp split_model="htdemucs" from lib.infer_pack.models import ( SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono, SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono, ) from fairseq import checkpoint_utils from vc_infer_pipeline import VC from config import Config config = Config() tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices()) voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list] hubert_model = None f0method_mode = ["pm", "harvest", "crepe"] f0method_info = "PM is fast, Harvest is good but extremely slow, and Crepe effect is good but requires GPU (Default: PM)" if os.path.isfile("rmvpe.pt"): f0method_mode.insert(2, "rmvpe") f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)" def load_hubert(): global hubert_model models, _, _ = checkpoint_utils.load_model_ensemble_and_task( ["hubert_base.pt"], suffix="", ) hubert_model = models[0] hubert_model = hubert_model.to(config.device) if config.is_half: hubert_model = hubert_model.half() else: hubert_model = hubert_model.float() hubert_model.eval() load_hubert() weight_root = "weights" index_root = "weights/index" weights_model = [] weights_index = [] for _, _, model_files in os.walk(weight_root): for file in model_files: if file.endswith(".pth"): weights_model.append(file) for _, _, index_files in os.walk(index_root): for file in index_files: if file.endswith('.index') and "trained" not in file: weights_index.append(os.path.join(index_root, file)) def check_models(): weights_model = [] weights_index = [] for _, _, model_files in os.walk(weight_root): for file in model_files: if file.endswith(".pth"): weights_model.append(file) for _, _, index_files in os.walk(index_root): for file in index_files: if file.endswith('.index') and "trained" not in file: weights_index.append(os.path.join(index_root, file)) return ( gr.Dropdown.update(choices=sorted(weights_model), value=weights_model[0]), gr.Dropdown.update(choices=sorted(weights_index)) ) def clean(): return ( gr.Dropdown.update(value=""), gr.Slider.update(visible=False) ) # Function to delete files def cleanup_files(file_paths): for path in file_paths: try: os.remove(path) print(f"Deleted {path}") except Exception as e: print(f"Error deleting {path}: {e}") @app.route('/convert_voice', methods=['POST']) def api_convert_voice(): spk_id = request.form['spk_id'] voice_transform = request.form['voice_transform'] # The file part if 'file' not in request.files: return jsonify({"error": "No file part"}), 400 file = request.files['file'] if file.filename == '': return jsonify({"error": "No selected file"}), 400 created_files = [] # Save the file to a temporary path unique_id = uuid.uuid4() filename = werkzeug.utils.secure_filename(file.filename) input_audio_path = os.path.join(tmp, f"{spk_id}_input_audio_{unique_id}.{filename.split('.')[-1]}") file.save(input_audio_path) created_files.append(input_audio_path) #split audio cut_vocal_and_inst(input_audio_path,spk_id) print("audio splitting performed") vocal_path = f"output/{split_model}/{spk_id}_input_audio_{unique_id}/vocals.wav" inst = f"output/{split_model}/{spk_id}_input_audio_{unique_id}/no_vocals.wav" output_path = convert_voice(spk_id, vocal_path, voice_transform) output_path1= combine_vocal_and_inst(output_path,inst) print(output_path1) created_files.extend([vocal_path, inst, output_path]) if os.path.exists(output_path1): return send_file(output_path1, as_attachment=True) else: return jsonify({"error": "File not found."}), 404 def convert_voice(spk_id, input_audio_path, voice_transform): get_vc(spk_id,0.5) output_audio_path = vc_single( sid=0, input_audio_path=input_audio_path, f0_up_key=voice_transform, # Assuming voice_transform corresponds to f0_up_key f0_file=None , f0_method="rmvpe", file_index=spk_id, # Assuming file_index_path corresponds to file_index index_rate=0.75, filter_radius=3, resample_sr=0, rms_mix_rate=0.25, protect=0.33 # Adjusted from protect_rate to protect to match the function signature ) print(output_audio_path) return output_audio_path def cut_vocal_and_inst(audio_path,spk_id): vocal_path = "output/result/audio.wav" os.makedirs("output/result", exist_ok=True) #wavfile.write(vocal_path, audio_data[0], audio_data[1]) #logs.append("Starting the audio splitting process...") #yield "\n".join(logs), None, None print("before executing splitter") command = f"demucs --two-stems=vocals -n {split_model} {audio_path} -o output" #result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True) result = subprocess.run(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) if result.returncode != 0: print("Demucs process failed:", result.stderr) else: print("Demucs process completed successfully.") print("after executing splitter") #for line in result.stdout: # logs.append(line) # yield "\n".join(logs), None, None print(result.stdout) vocal = f"output/{split_model}/{spk_id}_input_audio/vocals.wav" inst = f"output/{split_model}/{spk_id}_input_audio/no_vocals.wav" #logs.append("Audio splitting complete.") def combine_vocal_and_inst(vocal_path, inst_path): vocal_volume=1 inst_volume=1 os.makedirs("output/result", exist_ok=True) # Assuming vocal_path and inst_path are now directly passed as arguments output_path = "output/result/combine.mp3" #command = f'ffmpeg -y -i "{inst_path}" -i "{vocal_path}" -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame "{output_path}"' #command=f'ffmpeg -y -i "{inst_path}" -i "{vocal_path}" -filter_complex "amix=inputs=2:duration=longest" -b:a 320k -c:a libmp3lame "{output_path}"' # Load the audio files vocal = AudioSegment.from_file(vocal_path) instrumental = AudioSegment.from_file(inst_path) # Overlay the vocal track on top of the instrumental track combined = vocal.overlay(instrumental) # Export the result combined.export(output_path, format="mp3") #result = subprocess.run(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE) return output_path def vc_single( sid, input_audio_path, f0_up_key, f0_file, f0_method, file_index, index_rate, filter_radius, resample_sr, rms_mix_rate, protect ): # spk_item, input_audio0, vc_transform0,f0_file,f0method0 global tgt_sr, net_g, vc, hubert_model, version, cpt try: logs = [] print(f"Converting...") audio, sr = librosa.load(input_audio_path, sr=16000, mono=True) print(f"found audio ") f0_up_key = int(f0_up_key) times = [0, 0, 0] if hubert_model == None: load_hubert() print("loaded hubert") if_f0 = 1 audio_opt = vc.pipeline( hubert_model, net_g, 0, audio, input_audio_path, times, f0_up_key, f0_method, file_index, # file_big_npy, index_rate, if_f0, filter_radius, tgt_sr, resample_sr, rms_mix_rate, version, protect, f0_file=f0_file ) if resample_sr >= 16000 and tgt_sr != resample_sr: tgt_sr = resample_sr index_info = ( "Using index:%s." % file_index if os.path.exists(file_index) else "Index not used." ) print("writing to FS") output_file_path = os.path.join("output", f"converted_audio_{sid}.wav") # Adjust path as needed os.makedirs(os.path.dirname(output_file_path), exist_ok=True) # Create the output directory if it doesn't exist print("create dir") # Save the audio file using the target sampling rate sf.write(output_file_path, audio_opt, tgt_sr) print("wrote to FS") # Return the path to the saved file along with any other information return output_file_path except: info = traceback.format_exc() return info, (None, None) def get_vc(sid, to_return_protect0): global n_spk, tgt_sr, net_g, vc, cpt, version, weights_index if sid == "" or sid == []: global hubert_model if hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的 print("clean_empty_cache") del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None if torch.cuda.is_available(): torch.cuda.empty_cache() ###楼下不这么折腾清理不干净 if_f0 = cpt.get("f0", 1) version = cpt.get("version", "v1") if version == "v1": if if_f0 == 1: net_g = SynthesizerTrnMs256NSFsid( *cpt["config"], is_half=config.is_half ) else: net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) elif version == "v2": if if_f0 == 1: net_g = SynthesizerTrnMs768NSFsid( *cpt["config"], is_half=config.is_half ) else: net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) del net_g, cpt if torch.cuda.is_available(): torch.cuda.empty_cache() cpt = None return ( gr.Slider.update(maximum=2333, visible=False), gr.Slider.update(visible=True), gr.Dropdown.update(choices=sorted(weights_index), value=""), gr.Markdown.update(value="#