import os from huggingface_hub import HfApi # clone / pull the lmeh eval data HF_TOKEN = os.environ.get("HF_TOKEN", None) REPO_ID = "HuggingFaceH4/open_llm_leaderboard" QUEUE_REPO = "open-llm-leaderboard/requests" RESULTS_REPO = "open-llm-leaderboard/results" PRIVATE_QUEUE_REPO = "open-llm-leaderboard/private-requests" PRIVATE_RESULTS_REPO = "open-llm-leaderboard/private-results" IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True)) CACHE_PATH=os.getenv("HF_HOME", ".") EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue") EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results") EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private" EVAL_RESULTS_PATH_PRIVATE = "eval-results-private" PATH_TO_COLLECTION = "open-llm-leaderboard/llm-leaderboard-best-models-652d6c7965a4619fb5c27a03" # Rate limit variables RATE_LIMIT_PERIOD = 7 RATE_LIMIT_QUOTA = 5 HAS_HIGHER_RATE_LIMIT = ["TheBloke"] API = HfApi(token=HF_TOKEN)