Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torchvision | |
import os | |
import shutil | |
import gc | |
import tqdm | |
import matplotlib.pyplot as plt | |
import torchvision.transforms as transforms | |
from transformers import CLIPTextModel | |
from lora_w2w import LoRAw2w | |
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel, LMSDiscreteScheduler | |
from safetensors.torch import save_file | |
from transformers import AutoTokenizer, PretrainedConfig | |
from PIL import Image | |
import warnings | |
warnings.filterwarnings("ignore") | |
from diffusers import ( | |
AutoencoderKL, | |
DDPMScheduler, | |
DiffusionPipeline, | |
DPMSolverMultistepScheduler, | |
UNet2DConditionModel, | |
PNDMScheduler, | |
StableDiffusionPipeline | |
) | |
######## Basic utilities | |
### load base models | |
def load_models(device): | |
pretrained_model_name_or_path = "stablediffusionapi/realistic-vision-v51" | |
revision = None | |
rank = 1 | |
weight_dtype = torch.bfloat16 | |
# Load scheduler, tokenizer and models. | |
pipe = StableDiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51", | |
torch_dtype=torch.float16,safety_checker = None, | |
requires_safety_checker = False).to(device) | |
noise_scheduler = pipe.scheduler | |
del pipe | |
tokenizer = AutoTokenizer.from_pretrained( | |
pretrained_model_name_or_path, subfolder="tokenizer", revision=revision | |
) | |
text_encoder = CLIPTextModel.from_pretrained( | |
pretrained_model_name_or_path, subfolder="text_encoder", revision=revision | |
) | |
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision) | |
unet = UNet2DConditionModel.from_pretrained( | |
pretrained_model_name_or_path, subfolder="unet", revision=revision | |
) | |
unet.requires_grad_(False) | |
unet.to(device, dtype=weight_dtype) | |
vae.requires_grad_(False) | |
text_encoder.requires_grad_(False) | |
vae.requires_grad_(False) | |
vae.to(device, dtype=weight_dtype) | |
text_encoder.to(device, dtype=weight_dtype) | |
print("") | |
return unet, vae, text_encoder, tokenizer, noise_scheduler | |
### basic inference to generate images conditioned on text prompts | |
def inference(network, unet, vae, text_encoder, tokenizer, prompt, negative_prompt, guidance_scale, noise_scheduler, ddim_steps, seed, generator, device): | |
generator = generator.manual_seed(seed) | |
latents = torch.randn( | |
(1, unet.in_channels, 512 // 8, 512 // 8), | |
generator = generator, | |
device = device | |
).bfloat16() | |
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") | |
text_embeddings = text_encoder(text_input.input_ids.to(device))[0] | |
max_length = text_input.input_ids.shape[-1] | |
uncond_input = tokenizer( | |
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt" | |
) | |
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0] | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
noise_scheduler.set_timesteps(ddim_steps) | |
latents = latents * noise_scheduler.init_noise_sigma | |
for i,t in enumerate(tqdm.tqdm(noise_scheduler.timesteps)): | |
latent_model_input = torch.cat([latents] * 2) | |
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, timestep=t) | |
with network: | |
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample | |
#guidance | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample | |
latents = 1 / 0.18215 * latents | |
image = vae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
return image | |
### save model in w2w space (principal component representation) | |
def save_model_w2w(network, path): | |
proj = network.proj.clone().detach().float() | |
if not os.path.exists(path): | |
os.makedirs(path) | |
torch.save(proj, path+"/"+"w2wmodel.pt") | |
### save model in format compatible with Diffusers | |
def save_model_for_diffusers(network,std, mean, v, weight_dimensions, path): | |
proj = network.proj.clone().detach() | |
unproj = torch.matmul(proj,v[:, :].T)*std+mean | |
final_weights0 = {} | |
counter = 0 | |
for key in weight_dimensions.keys(): | |
final_weights0[key] = unproj[0, counter:counter+weight_dimensions[key][0][0]].unflatten(0, weight_dimensions[key][1]) | |
counter += weight_dimensions[key][0][0] | |
#renaming keys to be compatible with Diffusers | |
for key in list(final_weights0.keys()): | |
final_weights0[key.replace( "lora_unet_", "base_model.model.").replace("A", "down").replace("B", "up").replace( "weight", "identity1.weight").replace("_lora", ".lora").replace("lora_down", "lora_A").replace("lora_up", "lora_B")] = final_weights0.pop(key) | |
final_weights0_keys = sorted(final_weights0.keys()) | |
final_weights = {} | |
for i,key in enumerate(final_weights0_keys): | |
final_weights[key] = final_weights0[key] | |
if not os.path.exists(path): | |
os.makedirs(path+"/unet") | |
else: | |
os.mkdir(path+"/unet") | |
#add config for PeftConfig | |
shutil.copyfile("../files/adapter_config.json", path+"/unet/adapter_config.json") | |
save_file(final_weights, path+"/unet/adapter_model.safetensors") | |