from huggingface_hub import InferenceClient import gradio as gr import random client = InferenceClient("google/gemma-2b-it") def format_prompt(message, history): prompt = "" if history: for user_prompt, bot_response in history: prompt += f"user{user_prompt}" prompt += f"model{bot_response}" prompt += f"user{message}model" return prompt def generate(prompt, history, temperature=0.7, max_new_tokens=1024, top_p=0.90, repetition_penalty=0.9): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) if not history: history = [] rand_seed = random.randint(1, 1111111111111111) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=rand_seed, ) formatted_prompt = format_prompt(prompt, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output history.append((prompt, output)) return output mychatbot = gr.Chatbot( avatar_images=["./user.png", "./botgm.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,) additional_inputs=[ gr.Slider( label="Temperature", value=0.7, minimum=0.0, maximum=1.0, step=0.01, interactive=True, info="Higher values generate more diverse outputs", ), gr.Slider( label="Max new tokens", value=6400, minimum=0, maximum=8000, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p", value=0.90, minimum=0.0, maximum=1, step=0.01, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.0, minimum=0.1, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens", ) ] iface = gr.ChatInterface(fn=generate, chatbot=mychatbot, additional_inputs=additional_inputs, retry_btn=None, undo_btn=None ) with gr.Blocks() as demo: gr.HTML("

Chat with Google's Gemma

") iface.render() demo.queue().launch(show_api=False)