Spaces:
Sleeping
Sleeping
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chains import RetrievalQA | |
from langchain.chat_models import ChatOpenAI | |
from langchain.document_loaders import PyMuPDFLoader | |
import os | |
from langchain.agents import initialize_agent, Tool | |
from langchain.agents import AgentType | |
import chainlit as cl | |
async def start(): | |
welcome_message1 = "Hi, I'm **Ben**! Your Benchmarking Assistant" | |
welcome_message2 = "Powered by GPT-4, I can assist you with in-depth analysis of annual reports of some of the world's leading tech giants:\n- **Meta**\n- **Amazon**\n- **Alphabet**\n- **Apple**\n- **Microsoft**,\n\nfor the years **2022, 2021, and 2020**.\n\nWhether you are comparing financial performances, exploring trends, or seeking detailed insights across different years, Ben transforms complex data into actionable knowledge. Unlock the power of informed decision-making today with me!\n\nPlease ask a question to begin!" | |
sample_questions="Some of the questions you can try:\n***" | |
elements = [ | |
cl.Image(path="BenLogo2.png", name="Ben", display="inline", size="large"), | |
# cl.Text(content=welcome_message1, name="10K-GPT", display="inline"), | |
] | |
await cl.Message(content=welcome_message1, elements=elements).send() | |
await cl.Message(content=welcome_message2).send() | |
def load(): | |
embeddings = OpenAIEmbeddings() | |
llm = ChatOpenAI(temperature=0, model="gpt-4", streaming=True) | |
apple_2022_docs_store = FAISS.load_local(r'data/datastores/apple_2022', embeddings) | |
apple_2021_docs_store = FAISS.load_local(r'data/datastores/apple_2021', embeddings) | |
apple_2020_docs_store = FAISS.load_local(r'data/datastores/apple_2020', embeddings) | |
microsoft_2022_docs_store = FAISS.load_local(r'data/datastores/msft_2022', embeddings) | |
microsoft_2021_docs_store = FAISS.load_local(r'data/datastores/msft_2021', embeddings) | |
microsoft_2020_docs_store = FAISS.load_local(r'data/datastores/msft_2020', embeddings) | |
amazon_2022_docs_store = FAISS.load_local(r'data/datastores/amzn_2022', embeddings) | |
amazon_2021_docs_store = FAISS.load_local(r'data/datastores/amzn_2021', embeddings) | |
amazon_2020_docs_store = FAISS.load_local(r'data/datastores/amzn_2020', embeddings) | |
alphabet_2022_docs_store = FAISS.load_local(r'data/datastores/alphbt_2022', embeddings) | |
alphabet_2021_docs_store = FAISS.load_local(r'data/datastores/alphbt_2021', embeddings) | |
alphabet_2020_docs_store = FAISS.load_local(r'data/datastores/alphbt_2020', embeddings) | |
meta_2022_docs_store = FAISS.load_local(r'data/datastores/meta_2022', embeddings) | |
meta_2021_docs_store = FAISS.load_local(r'data/datastores/meta_2021', embeddings) | |
meta_2020_docs_store = FAISS.load_local(r'data/datastores/meta_2020', embeddings) | |
apple_2022_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=apple_2022_docs_store.as_retriever(search_kwargs={'k':5})) | |
apple_2021_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=apple_2021_docs_store.as_retriever(search_kwargs={'k':5})) | |
apple_2020_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=apple_2020_docs_store.as_retriever(search_kwargs={'k':5})) | |
microsoft_2022_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=microsoft_2022_docs_store.as_retriever(search_kwargs={'k':5})) | |
microsoft_2021_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=microsoft_2021_docs_store.as_retriever(search_kwargs={'k':5})) | |
microsoft_2020_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=microsoft_2020_docs_store.as_retriever(search_kwargs={'k':5})) | |
amazon_2022_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=amazon_2022_docs_store.as_retriever(search_kwargs={'k':5})) | |
amazon_2021_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=amazon_2021_docs_store.as_retriever(search_kwargs={'k':5})) | |
amazon_2020_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=amazon_2020_docs_store.as_retriever(search_kwargs={'k':5})) | |
meta_2022_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=meta_2022_docs_store.as_retriever(search_kwargs={'k':5})) | |
meta_2021_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=meta_2021_docs_store.as_retriever(search_kwargs={'k':5})) | |
meta_2020_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=meta_2020_docs_store.as_retriever(search_kwargs={'k':5})) | |
alphabet_2022_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=alphabet_2022_docs_store.as_retriever(search_kwargs={'k':5})) | |
alphabet_2021_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=alphabet_2021_docs_store.as_retriever(search_kwargs={'k':5})) | |
alphabet_2020_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=alphabet_2020_docs_store.as_retriever(search_kwargs={'k':5})) | |
tools = [ | |
Tool( | |
name="Apple Form 10K 2022", | |
func=apple_2022_qa.run, | |
description="useful when you need to answer from Apple 2022", | |
), | |
Tool( | |
name="Apple Form 10K 2021", | |
func=apple_2021_qa.run, | |
description="useful when you need to answer from Apple 2021", | |
), | |
Tool( | |
name="Apple Form 10K 2020", | |
func=apple_2020_qa.run, | |
description="useful when you need to answer from Apple 2020", | |
), | |
Tool( | |
name="Microsoft Form 10K 2022", | |
func=microsoft_2022_qa.run, | |
description="useful when you need to answer from Microsoft 2022", | |
), | |
Tool( | |
name="Microsoft Form 10K 2021", | |
func=microsoft_2021_qa.run, | |
description="useful when you need to answer from Microsoft 2021", | |
), | |
Tool( | |
name="Microsoft Form 10K 2020", | |
func=microsoft_2020_qa.run, | |
description="useful when you need to answer from Microsoft 2020", | |
), | |
Tool( | |
name="Meta Form 10K 2022", | |
func=meta_2022_qa.run, | |
description="useful when you need to answer from Meta 2022", | |
), | |
Tool( | |
name="Meta Form 10K 2021", | |
func=meta_2021_qa.run, | |
description="useful when you need to answer from Meta 2021", | |
), | |
Tool( | |
name="Meta Form 10K 2020", | |
func=meta_2020_qa.run, | |
description="useful when you need to answer from Meta 2020", | |
), | |
Tool( | |
name="Alphabet Form 10K 2022", | |
func=alphabet_2022_qa.run, | |
description="useful when you need to answer from Alphabet or Google 2022", | |
), | |
Tool( | |
name="Alphabet Form 10K 2021", | |
func=alphabet_2021_qa.run, | |
description="useful when you need to answer from Alphabet or Google 2021", | |
), | |
Tool( | |
name="Alphabet Form 10K 2020", | |
func=alphabet_2020_qa.run, | |
description="useful when you need to answer from Alphabet or Google 2020", | |
), | |
Tool( | |
name="Amazon Form 10K 2022", | |
func=amazon_2022_qa.run, | |
description="useful when you need to answer from Amazon 2022", | |
), | |
Tool( | |
name="Amazon Form 10K 2021", | |
func=amazon_2021_qa.run, | |
description="useful when you need to answer from Amazon 2021", | |
), | |
Tool( | |
name="Amazon Form 10K 2020", | |
func=amazon_2020_qa.run, | |
description="useful when you need to answer from Amazon 2020", | |
), | |
] | |
# Construct the agent. We will use the default agent type here. | |
# See documentation for a full list of options. | |
return initialize_agent( | |
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True | |
) | |