Spaces:
Runtime error
Runtime error
import pickle | |
import gradio as gr | |
from datasets import load_dataset | |
from transformers import AutoModel, AutoFeatureExtractor | |
# Only runs once when the script is first run. | |
with open("slugs_index_1024_cosine.pickle", "rb") as handle: | |
index = pickle.load(handle) | |
# Load model for computing embeddings. | |
feature_extractor = AutoFeatureExtractor.from_pretrained("sasha/autotrain-butterfly-similarity-2490576840") | |
model = AutoModel.from_pretrained("sasha/autotrain-butterfly-similarity-2490576840") | |
# Candidate images. | |
dataset = load_dataset("sasha/butterflies_10k_names_multiple") | |
ds = dataset["train"] | |
def query(image, top_k=4): | |
inputs = feature_extractor(image, return_tensors="pt") | |
model_output = model(**inputs) | |
embedding = model_output.pooler_output.detach() | |
results = index.query(embedding, k=top_k) | |
inx = results[0][0].tolist() | |
logits = results[1][0].tolist() | |
images = ds.select(inx)["image"] | |
captions = ds.select(inx)["name"] | |
images_with_captions = [(i, c) for i, c in zip(images,captions)] | |
labels_with_probs = dict(zip(captions,logits)) | |
labels_with_probs = {k: 1- v for k, v in labels_with_probs.items()} | |
return images_with_captions, labels_with_probs | |
with gr.Blocks() as demo: | |
gr.Markdown("# Find my Sea Slug π") | |
gr.Markdown("## Use this Space to find your sea slug, based on the [Nudibranchs of the Sunshine Coast Australia dataset](https://huggingface.co/datasets/sasha/australian_sea_slugs)!") | |
with gr.Row(): | |
with gr.Column(min_width= 900): | |
inputs = gr.Image(shape=(800, 1600)) | |
btn = gr.Button("Find my sea slug π!") | |
with gr.Column(): | |
outputs=gr.Gallery().style(grid=[2], height="auto") | |
labels = gr.Label() | |
gr.Markdown("### Image Examples") | |
gr.Examples( | |
examples=["elton.jpg", "ken.jpg", "gaga.jpg", "taylor.jpg"], | |
inputs=inputs, | |
outputs=[outputs,labels], | |
fn=query, | |
cache_examples=True, | |
) | |
btn.click(query, inputs, [outputs, labels]) | |
demo.launch() | |