NimaBoscarino's picture
Add some more instructions and limitations
cf5c8d2
raw
history blame
6.67 kB
import os
import gradio as gr
from huggingface_hub import ModelCard, HfApi
from compliance_checks import (
ComplianceSuite,
ComplianceCheck,
IntendedPurposeCheck,
GeneralLimitationsCheck,
ComputationalRequirementsCheck,
EvaluationCheck,
)
hf_writer = gr.HuggingFaceDatasetSaver(
os.getenv('HUGGING_FACE_HUB_TOKEN'),
organization="society-ethics",
dataset_name="model-card-regulatory-check-flags",
private=True
)
hf_api = HfApi()
checks = [
IntendedPurposeCheck(),
GeneralLimitationsCheck(),
ComputationalRequirementsCheck(),
EvaluationCheck(),
]
suite = ComplianceSuite(checks=checks)
def status_emoji(status: bool):
return "✅" if status else "🛑"
def search_for_models(query: str):
if query.strip() == "":
return examples, ",".join([e[0] for e in examples])
models = [m.id for m in list(iter(hf_api.list_models(search=query, limit=10)))]
model_samples = [[m] for m in models]
models_text = ",".join(models)
return model_samples, models_text
def load_model_card(index, options_string: str):
options = options_string.split(",")
model_id = options[index]
card = ModelCard.load(repo_id_or_path=model_id).content
return card
def run_compliance_check(model_card: str):
results = suite.run(model_card)
return [
*[gr.Accordion.update(label=f"{r.name} - {status_emoji(r.status)}", open=not r.status) for r in results],
*[gr.Markdown.update(value=r.to_string()) for r in results],
]
def fetch_and_run_compliance_check(model_id: str):
model_card = ModelCard.load(repo_id_or_path=model_id).content
return run_compliance_check(model_card=model_card)
def compliance_result(compliance_check: ComplianceCheck):
accordion = gr.Accordion(label=f"{compliance_check.name}", open=False)
description = gr.Markdown("Run an evaluation to see results...")
return accordion, description
def read_file(file_obj):
with open(file_obj.name) as f:
model_card = f.read()
return model_card
model_card_box = gr.TextArea(label="Model Card")
# Have to destructure everything since I need to delay rendering.
col = gr.Column()
tab = gr.Tab(label="Results")
col2 = gr.Column()
compliance_results = [compliance_result(c) for c in suite.checks]
compliance_accordions = [c[0] for c in compliance_results]
compliance_descriptions = [c[1] for c in compliance_results]
examples = [
["bigscience/bloom"],
["roberta-base"],
["openai/clip-vit-base-patch32"],
["distilbert-base-cased-distilled-squad"],
]
with gr.Blocks(css="""\
#file-upload .boundedheight {
max-height: 100px;
}
code {
overflow: scroll;
}
""") as demo:
gr.Markdown("""\
# RegCheck AI
This Space matches information in [model cards](https://huggingface.co/docs/hub/model-cards) to proposed \
regulatory compliance descriptions in the \
[EU AI Act](https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021PC0206).
This is a **prototype** to explore the feasibility of automatic checks for compliance, and is limited to specific \
provisions of Article 13 of the Act, “Transparency and provision of information to users”. \
**Please note: this is research work and NOT a commercial or legal product.**
""")
with gr.Accordion(label="Instructions", open=True):
gr.Markdown("""
To check a model card, first load it by doing any one of the following:
- If the model is on the Hugging Face Hub, search for a model and select it from the results.
- If you have the model card on your computer as a Markdown file, select the "Upload your own card" tab and \
click "Upload a Markdown file".
- Paste your model card's text directly into the "Model Card" text area.
""")
with gr.Accordion(label="Limitations", open=False):
gr.Markdown("""
This tool should be treated as a Proof Of Concept, and is not designed for production-level use.
- This is currently designed to only work on **English** model cards.
- This tool relies on a very strict model card schema, which may be different from your model card.
- If your model card contains any HTML fragments, this tool might not be able to read your model card.
""")
with gr.Row():
with gr.Column():
with gr.Tab(label="Load a card from the 🤗 Hugging Face Hub"):
with gr.Row():
model_id_search = gr.Text(label="Model ID")
search_results_text = gr.Text(visible=False, value=",".join([e[0] for e in examples]))
search_results_index = gr.Dataset(
label="Search Results",
components=[model_id_search],
samples=examples,
type="index",
)
model_id_search.change(
fn=search_for_models,
inputs=[model_id_search],
outputs=[search_results_index, search_results_text]
)
with gr.Tab(label="Upload your own card"):
file = gr.UploadButton(label="Upload a Markdown file", elem_id="file-upload")
# TODO: Bug – uploading more than once doesn't trigger the function? Gradio bug?
file.upload(
fn=read_file,
inputs=[file],
outputs=[model_card_box]
)
model_card_box.render()
with col.render():
with tab.render():
with col2.render():
for a, d in compliance_results:
with a.render():
d.render()
flag = gr.Button(value="Disagree with the result? Click here to flag it! 🚩")
flag_message = gr.Text(
show_label=False,
visible=False,
value="Thank you for flagging this! We'll use your report to improve the tool 🤗"
)
search_results_index.click(
fn=load_model_card,
inputs=[search_results_index, search_results_text],
outputs=[model_card_box]
)
model_card_box.change(
fn=run_compliance_check,
inputs=[model_card_box],
outputs=[*compliance_accordions, *compliance_descriptions]
)
flag.click(
fn=lambda x: hf_writer.flag(flag_data=[x]) and gr.Text.update(visible=True),
inputs=[model_card_box],
outputs=[flag_message]
)
hf_writer.setup(
components=[model_card_box],
flagging_dir="flagged"
)
demo.launch()