import streamlit as st import requests import openai from io import BytesIO from PIL import Image # Set page configuration as the first Streamlit command st.set_page_config(page_title="Eco-Symphony", page_icon="🌱", layout="centered") # Set API keys from Streamlit Secrets openai.api_key = st.secrets["OPENAI_API_KEY"] OPENWEATHER_API_KEY = st.secrets["OPENWEATHER_API_KEY"] HUGGINGFACE_API_KEY = st.secrets["HUGGINGFACE_API_KEY"] # Hugging Face API URLs MUSICGEN_API_URL = "https://api-inference.huggingface.co/models/facebook/musicgen-small" IMAGEGEN_API_URL = "https://api-inference.huggingface.co/models/Artples/LAI-ImageGeneration-vSDXL-2" # Headers for Hugging Face API requests headers = {"Authorization": f"Bearer {HUGGINGFACE_API_KEY}"} # Inject custom CSS for green theme st.markdown(""" """, unsafe_allow_html=True) # Initialize session state variables if "real_data" not in st.session_state: st.session_state.real_data = {} if "story" not in st.session_state: st.session_state.story = "" if "music_bytes" not in st.session_state: st.session_state.music_bytes = None if "image_bytes" not in st.session_state: st.session_state.image_bytes = None if "ngos" not in st.session_state: st.session_state.ngos = [] if "points" not in st.session_state: st.session_state.points = 0 if "daily_challenges" not in st.session_state: st.session_state.daily_challenges = [] # Function to generate daily eco-friendly challenges def generate_daily_challenges() -> list: prompt = "Give me 5 small, easy-to-do eco-friendly daily challenges that can be completed in a day." response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": prompt}], max_tokens=100, temperature=0.8 ) challenges = response.choices[0].message['content'].strip().split("\n") return [challenge.strip() for challenge in challenges if challenge.strip()] # Function to fetch weather data def fetch_real_data(city: str) -> dict: weather_url = f'https://api.openweathermap.org/data/2.5/weather?q={city}&appid={OPENWEATHER_API_KEY}&units=metric' weather_response = requests.get(weather_url) if weather_response.status_code != 200: st.error("Error fetching weather data.") return {} weather_data = weather_response.json() return { "temperature": weather_data['main'].get('temp', 'Data not available'), "humidity": weather_data['main'].get('humidity', 'Data not available'), "weather_condition": weather_data['weather'][0].get('main', 'Data not available') } # Function to determine mood based on weather data def determine_mood(data: dict) -> str: weather_condition = data["weather_condition"].lower() temperature = data["temperature"] if "rain" in weather_condition: return "rainy" elif "clear" in weather_condition and temperature > 25: return "sunny" elif "cloud" in weather_condition: return "cloudy" elif temperature < 15: return "cool" else: return "neutral" # Function to create a narrative def create_narrative(city: str, data: dict) -> str: return f"In {city}, the weather is {data['weather_condition']} with a temperature of {data['temperature']}°C." # Function to generate a story using OpenAI def generate_story_with_ai(narrative: str, mood: str) -> str: messages = [ {"role": "system", "content": "You are a creative storyteller using characters and imagery."}, {"role": "user", "content": f"{narrative} The mood is '{mood}', write a story about how the environment feels in 50 words."} ] response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=messages, max_tokens=150, temperature=0.7 ) return response.choices[0].message['content'].strip() # Function to generate music from Hugging Face API def generate_music(description: str) -> bytes: payload = {"inputs": description} response = requests.post(MUSICGEN_API_URL, headers=headers, json=payload) if response.status_code != 200: st.error(f"Error generating music: {response.status_code} {response.text}") return None return response.content # Function to generate an image based on the story def generate_image(description: str) -> bytes: payload = {"inputs": description} response = requests.post(IMAGEGEN_API_URL, headers=headers, json=payload) if response.status_code != 200: st.error(f"Error generating image: {response.status_code} {response.text}") return None return response.content # Function to fetch endangered species data def fetch_endangered_species(city: str) -> dict: prompt = f"Provide details of an endangered species which is highly specific in {city}, including its name, image description, and current population." response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": prompt}], max_tokens=150, temperature=0.8 ) response_content = response.choices[0].message['content'].strip() try: return eval(response_content) # Assuming the response is a JSON-like structure except Exception as e: st.error(f"Error parsing endangered species data: {e}") return {} # Function to fetch NGOs using OpenAI def fetch_nearby_ngos_with_openai(city: str, interests: list) -> list: prompt = ( f"List NGOs near {city} that focus on {', '.join(interests)}. " "Provide the names, locations, and focus areas in JSON format as a list of dictionaries." ) response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": prompt}], max_tokens=200, temperature=0.7 ) response_content = response.choices[0].message['content'].strip() try: ngo_list = eval(response_content) if isinstance(ngo_list, list) and all(isinstance(ngo, dict) for ngo in ngo_list): return ngo_list else: st.error("Unexpected response format. Could not parse NGO data.") return [] except Exception as e: st.error(f"Error fetching NGO data: {e}") return [] # Streamlit UI st.title("🌿 Eco-Symphony 🎶") st.write("Enter a city to explore real-time environmental data, complete daily challenges, and unlock hidden content!") city = st.text_input("Enter City Name:", placeholder="Type the name of a city...") if st.button("Generate Environmental Data, Music, and Image"): st.session_state.real_data = fetch_real_data(city) if st.session_state.real_data: # Generate narrative and mood narrative = create_narrative(city, st.session_state.real_data) mood = determine_mood(st.session_state.real_data) # Generate AI story st.session_state.story = generate_story_with_ai(narrative, mood) # Generate Music and Image Based on Story and Mood music_description = f"{mood} mood with {st.session_state.real_data['weather_condition'].lower()} weather" st.session_state.music_bytes = generate_music(music_description) st.session_state.image_bytes = generate_image(st.session_state.story) # Display Music and Image at the Top if st.session_state.music_bytes: st.subheader("🎶 Generated Music") st.audio(BytesIO(st.session_state.music_bytes), format="audio/wav") if st.session_state.image_bytes: st.subheader("🖼️ Generated Image") st.image(Image.open(BytesIO(st.session_state.image_bytes)), caption="Generated Image based on Story", use_column_width=True) # Display Environmental Narrative and Data if st.session_state.real_data: st.subheader("📜 Environmental Narrative") narrative = create_narrative(city, st.session_state.real_data) st.write(narrative) st.subheader("📊 Real Weather Data") st.write("Temperature (°C):", st.session_state.real_data.get("temperature", "Data not available")) st.write("Humidity (%):", st.session_state.real_data.get("humidity", "Data not available")) st.write("Weather Condition:", st.session_state.real_data.get("weather_condition", "Data not available")) if st.session_state.story: st.subheader("🌈 AI-Generated Story") st.write(st.session_state.story) # Daily Challenges Section st.subheader("🏆 Daily Challenges") if not st.session_state.daily_challenges: st.session_state.daily_challenges = generate_daily_challenges() completed_challenges = [] for i, challenge in enumerate(st.session_state.daily_challenges): if st.checkbox(challenge, key=f"challenge_{i}"): completed_challenges.append(i) # Update points based on completed challenges st.session_state.points = len(completed_challenges) * 10 # 10 points per challenge st.markdown(f"

💰 Points: {st.session_state.points}

", unsafe_allow_html=True) # Function to fetch endangered species data for a region def fetch_all_endangered_species(city: str) -> list: prompt = ( f"Provide a list of endangered species found near {city}, " "including their names, population estimates, and descriptions. " "Return the data in JSON format as a list of dictionaries." ) response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": prompt}], max_tokens=300, temperature=0.8 ) response_content = response.choices[0].message['content'].strip() try: species_list = eval(response_content) # Assuming the response is a JSON-like structure if isinstance(species_list, list) and all(isinstance(species, dict) for species in species_list): return species_list else: st.error("Unexpected response format. Could not parse species data.") return [] except Exception as e: st.error(f"Error fetching endangered species data: {e}") return [] # Display the endangered species section if len(completed_challenges) == len(st.session_state.daily_challenges): st.success("All challenges completed! 🎉 You've unlocked the secret section!") # Fetch endangered species data for the user's city species_data_list = fetch_all_endangered_species(city) if species_data_list: st.subheader("🦋 Endangered Species in Your Region") for species_data in species_data_list: species_name = species_data.get('name', 'Unknown') st.write(f"**Species**: {species_name}") st.write(f"**Population**: {species_data.get('population', 'Unknown')}") st.write(f"**Description**: {species_data.get('description', 'No description available')}") # Generate an image of each endangered species image_description = f"Generate an image of the endangered species: {species_name}" species_image_bytes = generate_image(image_description) if species_image_bytes: species_image = Image.open(BytesIO(species_image_bytes)) st.image(species_image, caption=f"Endangered Species: {species_name}", use_column_width=True) st.write("---") # User's Environmental Interests Section st.subheader("🌍 Get Involved!") st.write("Choose your areas of interest for saving the environment:") interests = st.multiselect( "Select Areas of Interest:", ["Afforestation", "Water Conservation", "Biodiversity Protection", "Recycling", "Climate Change Awareness"] ) if st.button("Find Nearby NGOs"): if interests: st.session_state.ngos = fetch_nearby_ngos_with_openai(city, interests) else: st.warning("Please select at least one area of interest.") # Display NGO information if st.session_state.ngos: st.subheader("🌟 NGOs Near You") for ngo in st.session_state.ngos: st.write(f"**{ngo.get('name', 'Unknown NGO')}**") st.write(f"📍 Location: {ngo.get('location', 'Unknown Location')}") st.write(f"🌱 Focus Area: {ngo.get('focus', 'Unknown Focus Area')}") st.write("---")