Spaces:
Sleeping
Sleeping
File size: 10,292 Bytes
9740bc5 edce499 c6ad8e3 edce499 9740bc5 edce499 9740bc5 162d5c8 9740bc5 162d5c8 9740bc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import asyncio
from collections import deque
import os
import threading
import time
import av
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
import pydub
import torch
# import av
# import cv2
from sample_utils.turn import get_ice_servers
import json
from typing import List
from dotenv import load_dotenv
load_dotenv()
async def main():
system_one = {
"audio_bit_rate": 16000,
# "audio_bit_rate": 32000,
# "audio_bit_rate": 48000,
# "vision_embeddings_fps": 5,
"vision_embeddings_fps": 2,
}
system_one["video_detection_emotions"] = [
"a happy person",
"the person is happy",
"the person's emotional state is happy",
"a sad person",
"a scared person",
"a disgusted person",
"an angry person",
"a suprised person",
"a bored person",
"an interested person",
"a guilty person",
"an indiffert person",
"a distracted person",
]
# system_one["video_detection_emotions"] = [
# "Happiness",
# "Sadness",
# "Fear",
# "Disgust",
# "Anger",
# "Surprise",
# "Boredom",
# "Interest",
# "Excitement",
# "Guilt",
# "Shame",
# "Relief",
# "Love",
# "Embarrassment",
# "Pride",
# "Envy",
# "Jealousy",
# "Anxiety",
# "Hope",
# "Despair",
# "Frustration",
# "Confusion",
# "Curiosity",
# "Contentment",
# "Indifference",
# "Anticipation",
# "Gratitude",
# "Bitterness"
# ]
system_one["video_detection_engement"] = [
"the person is engaged in the conversation",
"the person is not engaged in the conversation",
"the person is looking at me",
"the person is not looking at me",
"the person is talking to me",
"the person is not talking to me",
"the person is engaged",
"the person is talking",
"the person is listening",
]
system_one["video_detection_present"] = [
"the view from a webcam",
"the view from a webcam we see a person",
# "the view from a webcam. I see a person",
# "the view from a webcam. The person is looking at the camera",
# "i am a webcam",
# "i am a webcam and i see a person",
# "i am a webcam and i see a person. The person is looking at me",
# "a person",
# "a person on a Zoom call",
# "a person on a FaceTime call",
# "a person on a WebCam call",
# "no one",
# " ",
# "multiple people",
# "a group of people",
]
system_one_audio_status = st.empty()
playing = st.checkbox("Playing", value=True)
def handle_audio_frame(frame):
# if self.vosk.AcceptWaveform(data):
pass
# create frames to be returned.
new_frames = []
for frame in frames:
input_array = frame.to_ndarray()
new_frame = av.AudioFrame.from_ndarray(
np.zeros(input_array.shape, dtype=input_array.dtype),
layout=frame.layout.name,
)
new_frame.sample_rate = frame.sample_rate
new_frames.append(new_frame)
# TODO: replace with the audio we want to send to the other side.
return new_frames
system_one_audio_status.write("Initializing CLIP model")
from clip_transform import CLIPTransform
clip_transform = CLIPTransform()
system_one_audio_status.write("Initializing chat pipeline")
from chat_pipeline import ChatPipeline
chat_pipeline = ChatPipeline()
await chat_pipeline.start()
system_one_audio_status.write("Initializing CLIP templates")
embeddings = clip_transform.text_to_embeddings(system_one["video_detection_emotions"])
system_one["video_detection_emotions_embeddings"] = embeddings
embeddings = clip_transform.text_to_embeddings(system_one["video_detection_engement"])
system_one["video_detection_engement_embeddings"] = embeddings
embeddings = clip_transform.text_to_embeddings(system_one["video_detection_present"])
system_one["video_detection_present_embeddings"] = embeddings
system_one_audio_status.write("Initializing webrtc_streamer")
webrtc_ctx = webrtc_streamer(
key="charles",
desired_playing_state=playing,
# audio_receiver_size=4096,
queued_audio_frames_callback=queued_audio_frames_callback,
queued_video_frames_callback=queued_video_frames_callback,
mode=WebRtcMode.SENDRECV,
rtc_configuration={"iceServers": get_ice_servers()},
async_processing=True,
)
if not webrtc_ctx.state.playing:
exit
system_one_audio_status.write("Initializing streaming")
system_one_audio_output = st.empty()
system_one_video_output = st.empty()
system_one_audio_history = []
system_one_audio_history_output = st.empty()
sound_chunk = pydub.AudioSegment.empty()
current_video_embedding = None
current_video_embedding_timestamp = time.monotonic()
def get_dot_similarities(video_embedding, embeddings, embeddings_labels):
dot_product = torch.mm(embeddings, video_embedding.T)
similarity_image_label = [(float("{:.4f}".format(dot_product[i][0])), embeddings_labels[i]) for i in range(len(embeddings_labels))]
similarity_image_label.sort(reverse=True)
return similarity_image_label
def get_top_3_similarities_as_a_string(video_embedding, embeddings, embeddings_labels):
similarities = get_dot_similarities(video_embedding, embeddings, embeddings_labels)
top_3 = ""
range_len = 3 if len(similarities) > 3 else len(similarities)
for i in range(range_len):
top_3 += f"{similarities[i][1]} ({similarities[i][0]}) "
return top_3
while True:
try:
if webrtc_ctx.state.playing:
# handle video
video_frames = []
with video_frames_deque_lock:
while len(video_frames_deque) > 0:
frame = video_frames_deque.popleft()
video_frames.append(frame)
get_embeddings = False
get_embeddings |= current_video_embedding is None
current_time = time.monotonic()
elapsed_time = current_time - current_video_embedding_timestamp
get_embeddings |= elapsed_time > 1. / system_one['vision_embeddings_fps']
if get_embeddings and len(video_frames) > 0:
current_video_embedding_timestamp = current_time
current_video_embedding = clip_transform.image_to_embeddings(video_frames[-1].to_ndarray())
emotions_top_3 = get_top_3_similarities_as_a_string(current_video_embedding, system_one["video_detection_emotions_embeddings"], system_one["video_detection_emotions"])
engagement_top_3 = get_top_3_similarities_as_a_string(current_video_embedding, system_one["video_detection_engement_embeddings"], system_one["video_detection_engement"])
present_top_3 = get_top_3_similarities_as_a_string(current_video_embedding, system_one["video_detection_present_embeddings"], system_one["video_detection_present"])
# table_content = "**System 1 Video:**\n\n"
table_content = "| System 1 Video | |\n| --- | --- |\n"
table_content += f"| Present | {present_top_3} |\n"
table_content += f"| Emotion | {emotions_top_3} |\n"
table_content += f"| Engagement | {engagement_top_3} |\n"
system_one_video_output.markdown(table_content)
# system_one_video_output.markdown(f"**System 1 Video:** \n [Emotion: {emotions_top_3}], \n [Engagement: {engagement_top_3}], \n [Present: {present_top_3}] ")
# for similarity, image_label in similarity_image_label:
# print (f"{similarity} {image_label}")
if len(audio_frames) == 0:
time.sleep(0.1)
system_one_audio_status.write("No frame arrived.")
continue
system_one_audio_status.write("Running. Say something!")
for audio_frame in audio_frames:
sound = pydub.AudioSegment(
data=audio_frame.to_ndarray().tobytes(),
sample_width=audio_frame.format.bytes,
frame_rate=audio_frame.sample_rate,
channels=len(audio_frame.layout.channels),
)
sound = sound.set_channels(1)
sound = sound.set_frame_rate(system_one['audio_bit_rate'])
sound_chunk += sound
if len(sound_chunk) > 0:
buffer = np.array(sound_chunk.get_array_of_samples())
text, speaker_finished = do_work(buffer.tobytes())
system_one_audio_output.markdown(f"**System 1 Audio:** {text}")
if speaker_finished and len(text) > 0:
system_one_audio_history.append(text)
if len(system_one_audio_history) > 10:
system_one_audio_history = system_one_audio_history[-10:]
table_content = "| System 1 Audio History |\n| --- |\n"
table_content += "\n".join([f"| {item} |" for item in reversed(system_one_audio_history)])
system_one_audio_history_output.markdown(table_content)
await chat_pipeline.enqueue(text)
sound_chunk = pydub.AudioSegment.empty()
else:
system_one_audio_status.write("Stopped.")
break
except KeyboardInterrupt:
print("Pipeline interrupted by user")
except Exception as e:
print(f"An error occurred: {e}")
if __name__ == "__main__":
asyncio.run(main()) |