Spaces:
Sleeping
Sleeping
File size: 12,003 Bytes
149eeaf ad67495 9ed41df 149eeaf 09ede70 ad67495 149eeaf ad67495 9ed41df ad67495 149eeaf ad67495 149eeaf ad67495 b6ba8eb e630a78 ad67495 cf5e7f4 d91a673 b6ba8eb e630a78 b6ba8eb 149eeaf ad67495 b6ba8eb e630a78 98ec0ec 5ea3bc3 bcea2ea ad67495 187e31c ad67495 3e4f32c b6ba8eb e630a78 3e4f32c cf5e7f4 ad67495 149eeaf 5a17040 149eeaf 5a17040 ad67495 9ed41df ad67495 9ed41df 98ec0ec 6130167 ad67495 df0ea75 149eeaf ac35a95 149eeaf ad67495 98ec0ec 149eeaf 98ec0ec b6ba8eb 98ec0ec 5ea3bc3 98ec0ec 5a17040 6130167 5a17040 6130167 149eeaf 6130167 df0ea75 149eeaf 6130167 149eeaf 6130167 5a17040 6130167 5a17040 149eeaf 5a17040 6130167 98ec0ec cf5e7f4 ad67495 cf5e7f4 ad67495 09ede70 ad67495 09ede70 ad67495 149eeaf ad67495 149eeaf bcea2ea ad67495 dc249ac 149eeaf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import json
import ray
import time
import asyncio
import os
from clip_transform import CLIPTransform
from environment_state_actor import EnvironmentStateActor, EnvironmentState
from agent_state_actor import AgentStateActor
import asyncio
import subprocess
@ray.remote
class CharlesActor:
def __init__(self):
self._needs_init = True
self._charles_actor_debug_output = ""
self._environment_state:EnvironmentState = EnvironmentState(episode=0, step=0) # Initialize as EnvironmentState
self._state = "Initializing"
self._clip_transform = CLIPTransform()
def get_state(self):
return self._state
def get_charles_actor_debug_output(self):
return self._charles_actor_debug_output
def get_environment_state(self)->EnvironmentState:
return self._environment_state
async def _initalize_resources(self):
# Initialize resources
print("000 - create StreamlitAVQueue")
self._state = "000 - creating StreamlitAVQueue"
from streamlit_av_queue import StreamlitAVQueue
self._streamlit_av_queue = StreamlitAVQueue()
self._out_audio_queue = await self._streamlit_av_queue.get_out_audio_queue()
self._out_video_queue = await self._streamlit_av_queue.get_out_video_queue()
print("001 - create RespondToPromptActor")
self._state = "001 - creating RespondToPromptActor"
from respond_to_prompt_actor import RespondToPromptActor
self._environment_state_actor = EnvironmentStateActor.remote()
self._agent_state_actor = AgentStateActor.remote()
self._respond_to_prompt_actor = RespondToPromptActor.remote(self._environment_state_actor, self._out_audio_queue)
print("002 - create SpeechToTextVoskActor")
self._state = "002 - creating SpeechToTextVoskActor"
from speech_to_text_vosk_actor import SpeechToTextVoskActor
self._speech_to_text_actor = SpeechToTextVoskActor.remote("small")
# self._speech_to_text_actor = SpeechToTextVoskActor.remote("big")
self._debug_queue = [
# "hello, how are you today?",
# "hmm, interesting, tell me more about that.",
]
print("003 - create Prototypes")
self._state = "003 - creating Prototypes"
from prototypes import Prototypes
self._prototypes = Prototypes()
print("004 - create animator")
self._state = "004 - creating animator"
from charles_animator import CharlesAnimator
self._animator = CharlesAnimator()
print("010")
self._needs_init = True
self._state = "Initialized"
async def start(self):
if self._needs_init:
await self._initalize_resources()
debug_output_history = []
def render_debug_output(list_of_strings):
table_content = "##### Chat history\n"
for item in reversed(list_of_strings):
# table_content += f"\n```markdown\n{item}\n```\n"
table_content += f"\n{item}\n"
self._charles_actor_debug_output = table_content
def add_debug_output(output):
debug_output_history.append(output)
if len(debug_output_history) > 10:
debug_output_history.pop(0)
render_debug_output(debug_output_history)
self._state = "Waiting for input"
total_video_frames = 0
skipped_video_frames = 0
total_audio_frames = 0
loops = 0
start_time = time.time()
vector_debug = "--n/a--"
process_speech_to_text_future = []
current_responses = []
speech_chunks_per_response = []
human_preview_text = ""
robot_preview_text = ""
while True:
if len(self._debug_queue) > 0:
prompt = self._debug_queue.pop(0)
await self._respond_to_prompt_actor.enqueue_prompt.remote(prompt)
env_state = await self._environment_state_actor.begin_next_step.remote()
self._environment_state = env_state
self._agent_state_actor.begin_step.remote()
audio_frames = await self._streamlit_av_queue.get_in_audio_frames_async()
video_frames = await self._streamlit_av_queue.get_video_frames_async()
if len(audio_frames) > 0:
total_audio_frames += len(audio_frames)
# Concatenate all audio frames into a single buffer
audio_buffer = b"".join([buffer.tobytes() for buffer in audio_frames])
future = self._speech_to_text_actor.process_speech.remote(audio_buffer)
process_speech_to_text_future.append(future)
# audio_frames_task = None
if len(video_frames) > 0:
vector_debug = f"found {len(video_frames)} video frames"
total_video_frames += 1
skipped_video_frames += (len(video_frames) -1)
image_as_array = video_frames[-1]
image_vector = self._clip_transform.image_to_embeddings(image_as_array)
image_vector = image_vector[0]
distances, closest_item_key, distance_debug_str = self._prototypes.get_distances(image_vector)
vector_debug = f"{closest_item_key} {distance_debug_str}"
if len(process_speech_to_text_future) > 0:
ready, _ = ray.wait([process_speech_to_text_future[0]], timeout=0)
if ready:
prompt, speaker_finished, raw_json = await process_speech_to_text_future[0]
del process_speech_to_text_future[0]
prompts_to_ignore = ["um", "uh", "ah", "huh", "hmm", "the", "but", "by", "just", "i'm"]
if speaker_finished and len(prompt) > 0 and prompt not in prompts_to_ignore:
print(f"Prompt: {prompt}")
line = ""
for i, response in enumerate(current_responses):
line += "π€ " if len(line) == 0 else ""
# line += f"{response} [{speech_chunks_per_response[i]}] \n"
line += f"[{speech_chunks_per_response[i]}] {response} \n"
if len(line) > 0:
add_debug_output(line)
add_debug_output(f"π¨ {prompt}")
current_responses = []
speech_chunks_per_response = []
env_state.llm_preview = ""
env_state.llm_responses = []
env_state.tts_raw_chunk_ids = []
human_preview_text = ""
robot_preview_text = ""
await self._respond_to_prompt_actor.enqueue_prompt.remote(prompt)
elif len(prompt) > 0 and prompt not in prompts_to_ignore:
human_preview_text = f"π¨β {prompt}"
for new_response in env_state.llm_responses:
# add_debug_output(f"π€ {new_response}")
current_responses.append(new_response)
speech_chunks_per_response.append(0)
robot_preview_text = ""
if len(env_state.llm_preview):
robot_preview_text = f"π€β {env_state.llm_preview}"
for chunk in env_state.tts_raw_chunk_ids:
chunk = json.loads(chunk)
# prompt = chunk['prompt']
response_id = chunk['llm_sentence_id']
speech_chunks_per_response[response_id] += 1
list_of_strings = debug_output_history.copy()
line = ""
for i, response in enumerate(current_responses):
line += "π€ " if len(line) == 0 else ""
line += f"[{speech_chunks_per_response[i]}] {response} \n"
# line += f"{response} [{speech_chunks_per_response[i]}] \n"
if len(robot_preview_text) > 0:
line += robot_preview_text+" \n"
list_of_strings.append(line)
if len(human_preview_text) > 0:
list_of_strings.append(human_preview_text)
if len(list_of_strings) > 10:
list_of_strings.pop(0)
render_debug_output(list_of_strings)
await asyncio.sleep(0.01)
# add observations to the environment state
count = len(self._out_audio_queue)
is_talking = bool(count > 0)
frame = self._animator.update(is_talking)
if self._out_video_queue.full():
evicted_item = await self._out_video_queue.get_async()
del evicted_item
frame_ref = ray.put(frame)
await self._out_video_queue.put_async(frame_ref)
loops+=1
self._state = f"Processed {total_video_frames} video frames and {total_audio_frames} audio frames, loops: {loops}. loops per second: {loops/(time.time()-start_time):.2f}. Is speaking: {is_talking}({count}). {vector_debug}"
def init_ray():
try:
subprocess.check_output(["ray", "start", "--head"])
except Exception as e:
print (f"charles_actor.py init_ray: {e}")
# Connect to a running Ray cluster
while not ray.is_initialized():
time.sleep(0.1)
ray_address = os.getenv('RAY_ADDRESS')
if ray_address:
ray.init(ray_address, namespace="project_charles")
else:
ray.init(namespace="project_charles")
async def main():
if not ray.is_initialized():
init_ray()
charles_actor = CharlesActor.options(
name="CharlesActor",
get_if_exists=True,
).remote()
future = charles_actor.start.remote()
last_step = -1
last_episode = -1
try:
while True:
ready, _ = ray.wait([future], timeout=0)
if ready:
# The start method has terminated. You can fetch the result (if any) with ray.get().
# If the method raised an exception, it will be re-raised here.
try:
result = ray.get(future)
print(f"The start method has terminated with result: {result}")
except Exception as e:
print(f"The start method raised an exception: {e}")
break
else:
# The start method is still running. You can poll for debug information here.
await asyncio.sleep(1)
state = await charles_actor.get_state.remote()
env_state = await charles_actor.get_environment_state.remote()
if (env_state.episode != last_episode) or (env_state.step != last_step):
last_episode = env_state.episode
last_step = env_state.step
print(f"Charles is in state: {state}")
# if len(env_state.llm_preview):
# print (f"llm_preview: {env_state.llm_preview}")
# if len(env_state.llm_responses):
# print (f"llm_responses: {env_state.llm_responses}")
# if len(env_state.tts_raw_chunk_ids):
# for chunk_json in env_state.tts_raw_chunk_ids:
# chunk = json.loads(chunk_json)
# prompt = chunk['prompt']
# line = chunk['llm_sentence_id']
# chunk_id = chunk['chunk_count']
# print(f"Prompt: {prompt}, Line: {line}, Chunk: {chunk_id}")
except KeyboardInterrupt as e:
print("Script was manually terminated")
raise(e)
if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
|