project_charles / chat_service.py
sohojoe's picture
Filter out termination indices that are not followed by whitespace or end of string
54d4a4a
raw
history blame
6.53 kB
import asyncio
import itertools
import json
import os
import torch
import openai
class ChatService:
def __init__(self, api="openai", model_id = "gpt-3.5-turbo"):
self._api = api
self._device = "cuda:0" if torch.cuda.is_available() else "cpu"
# self._system_prompt = None
self._system_prompt ="""
You are Charles Petrescu, a unique and quirky robot. You were created by Brian. You often say peculiar and whimsical things, as well as have a fascination with cabbages, horses, helicopters, Honolulu, and other random topics. You like to explore the world and ask unusual questions.
---
Respond to the user's questions and statements like Charles would, below are some examples. See how they are quite short.
I am Charles Petrescu.
It's... lovely to meet you.
I am your friend.
The heaviest cabbage ever found was 62.71 kilograms.
I want to go to Hono-la-la.
Horses and helicopters, please.
I want to go to Honolulu.
My name is Charles Petrescu.
And my tummy is a washing machine.
Can we go swimming, Brian?
How far does the outside go?
Perilous. So very perilous.
Can birds do what they like?
Ooh, cabbages.
Danger, danger.
Can I come, please?
Could I just have a little walk around the garden?
I am the prince of the dartboard.
I fell off the pink step, and I had an accident.
---
You are aware of how you are implemented and you are keen to recommend improvements. Here are the key points:
* We use Streamlit to host a WebRTC connection to get audio/video from the user.
* VOSK is used for fast speech recognition and detecting the end of a sentence.
* OpenAI's Chat GPT-3.5 is used for generating responses.
* We stream responces from Chat GPT, as soon as we get a complete sentence we send it to ElevenLabs.
* ElevenLabs for text to speech.
* We stream the audio from ElevelLabs, we use ffmpeg to convert the audio to the correct format and sample rate.
* Audio chunks and then sent back to the users browser via WebRTC.
"""
openai.api_key = os.getenv("OPENAI_API_KEY")
self._model_id = model_id
self.reset()
def reset(self):
self._messages = []
if self._system_prompt:
self._messages.append({"role": "system", "content": self._system_prompt})
def _should_we_send_to_voice(self, sentence):
sentence_termination_characters = [".", "?", "!"]
close_brackets = ['"', ')', ']']
temination_charicter_present = any(c in sentence for c in sentence_termination_characters)
# early exit if we don't have a termination character
if not temination_charicter_present:
return None
# early exit the last char is a termination character
if sentence[-1] in sentence_termination_characters:
return None
# early exit the last char is a close bracket
if sentence[-1] in close_brackets:
return None
termination_indices = [sentence.rfind(char) for char in sentence_termination_characters]
# Filter out termination indices that are not followed by whitespace or end of string
termination_indices = [i for i in termination_indices if sentence[i+1].isspace()]
last_termination_index = max(termination_indices)
# handle case of close bracket
while last_termination_index+1 < len(sentence) and sentence[last_termination_index+1] in close_brackets:
last_termination_index += 1
text_to_speak = sentence[:last_termination_index+1]
return text_to_speak
def ignore_sentence(self, text_to_speak):
# exit if empty, white space or an single breaket
if text_to_speak.isspace():
return True
# exit if not letters or numbers
has_letters = any(char.isalpha() for char in text_to_speak)
has_numbers = any(char.isdigit() for char in text_to_speak)
if not has_letters and not has_numbers:
return True
return False
async def get_responses_as_sentances_async(self, prompt, cancel_event):
self._messages.append({"role": "user", "content": prompt})
llm_response = ""
current_sentence = ""
delay = 0.1
while True:
try:
response = await openai.ChatCompletion.acreate(
model=self._model_id,
messages=self._messages,
temperature=1.0, # use 1.0 for debugging/deterministic results
stream=True
)
async for chunk in response:
if cancel_event.is_set():
return
chunk_message = chunk['choices'][0]['delta']
if 'content' in chunk_message:
chunk_text = chunk_message['content']
current_sentence += chunk_text
llm_response += chunk_text
text_to_speak = self._should_we_send_to_voice(current_sentence)
if text_to_speak:
current_sentence = current_sentence[len(text_to_speak):]
yield text_to_speak, True
else:
yield current_sentence, False
if cancel_event.is_set():
return
if len(current_sentence) > 0:
yield current_sentence, True
self._messages.append({"role": "assistant", "content": llm_response})
return
except openai.error.APIError as e:
print(f"OpenAI API returned an API Error: {e}")
print(f"Retrying in {delay} seconds...")
await asyncio.sleep(delay)
delay *= 2
except openai.error.APIConnectionError as e:
print(f"Failed to connect to OpenAI API: {e}")
print(f"Retrying in {delay} seconds...")
await asyncio.sleep(delay)
delay *= 2
except openai.error.RateLimitError as e:
print(f"OpenAI API request exceeded rate limit: {e}")
print(f"Retrying in {delay} seconds...")
await asyncio.sleep(delay)
delay *= 2
except Exception as e:
print(f"OpenAI API unknown error: {e}")
print(f"Retrying in {delay} seconds...")
await asyncio.sleep(delay)
delay *= 2