Spaces:
Build error
Build error
from flask import Flask, request, jsonify, send_file, render_template_string | |
import requests | |
import io | |
import os | |
import random | |
from PIL import Image | |
from deep_translator import GoogleTranslator | |
import torch | |
from transformers import pipeline, hf_hub_download | |
from black_forest_labs import FluxPipeline # FluxPipelineのクラスはインポート元のモジュールに応じて変更 | |
app = Flask(__name__) | |
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" | |
API_TOKEN = os.getenv("HF_READ_TOKEN") | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
timeout = 50000 # タイムアウトを300秒に設定 | |
# 初期化したFluxPipelineのオブジェクト | |
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) | |
pipe.to(device="cuda", dtype=torch.bfloat16) | |
# Function to load LoRA weights dynamically | |
def load_lora_weights(pipe, lora_model_name, lora_scale=0.125): | |
try: | |
# Hugging Face Hubからの動的ダウンロード | |
lora_weights_path = hf_hub_download(lora_model_name, filename="Hyper-FLUX.1-dev-8steps-lora.safetensors") | |
pipe.load_lora_weights(lora_weights_path) | |
pipe.fuse_lora(lora_scale=lora_scale) | |
print(f"Loaded LoRA weights from {lora_model_name} with scale {lora_scale}") | |
except Exception as e: | |
print(f"Error loading LoRA weights: {e}") | |
return f"Error loading LoRA weights: {e}" | |
return None | |
# Function to query the API and return the generated image | |
def query(prompt, negative_prompt="", steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024, lora=None, lora_scale=0.125): | |
if not prompt: | |
return None, "Prompt is required" | |
key = random.randint(0, 999) | |
# Translate the prompt from Russian to English if necessary | |
prompt = GoogleTranslator(source='ru', target='en').translate(prompt) | |
print(f'Generation {key} translation: {prompt}') | |
# LoRAが設定されている場合、ロードして適用 | |
if lora: | |
error = load_lora_weights(pipe, lora, lora_scale) | |
if error: | |
return None, error | |
# Add some extra flair to the prompt | |
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." | |
print(f'Generation {key}: {prompt}') | |
# LoRA適用後、画像を生成 | |
try: | |
image = pipe(prompt, negative_prompt=negative_prompt, steps=steps, cfg_scale=cfg_scale, seed=seed, width=width, height=height, strength=strength).images[0] | |
return image, None | |
except Exception as e: | |
return None, f"Error during image generation: {e}" | |
# Content-Security-Policyヘッダーを設定するための関数 | |
def add_security_headers(response): | |
response.headers['Content-Security-Policy'] = ( | |
"default-src 'self'; " | |
"connect-src 'self' ^https?:\/\/[\w.-]+\.[\w.-]+(\/[\w.-]*)*(\?[^\s]*)?$" | |
"img-src 'self' data:; " | |
"style-src 'self' 'unsafe-inline'; " | |
"script-src 'self' 'unsafe-inline'; " | |
) | |
return response | |
# HTML template for the index page | |
index_html = """ | |
""" | |
def index(): | |
return render_template_string(index_html) | |
def generate_image(): | |
prompt = request.args.get("prompt", "") | |
negative_prompt = request.args.get("negative_prompt", "") | |
steps = int(request.args.get("steps", 35)) | |
cfg_scale = float(request.args.get("cfgs", 7)) | |
sampler = request.args.get("sampler", "DPM++ 2M Karras") | |
strength = float(request.args.get("strength", 0.7)) | |
seed = int(request.args.get("seed", -1)) | |
width = int(request.args.get("width", 1024)) | |
height = int(request.args.get("height", 1024)) | |
lora = request.args.get("lora", None) # loraパラメータの取得 | |
lora_scale = float(request.args.get("lora_scale", 0.125)) # lora_scaleパラメータの取得 | |
image, error = query(prompt, negative_prompt, steps, cfg_scale, sampler, seed, strength, width, height, lora, lora_scale) | |
if error: | |
return jsonify({"error": error}), 400 | |
img_bytes = io.BytesIO() | |
image.save(img_bytes, format='PNG') | |
img_bytes.seek(0) | |
return send_file(img_bytes, mimetype='image/png') | |
if __name__ == "__main__": | |
app.run(host='0.0.0.0', port=7860) | |