import hf_hub_download from flask import Flask, request, jsonify, send_file, render_template_string import requests import io import os import random from PIL import Image from deep_translator import GoogleTranslator import torch from transformers import pipeline, hf_hub_download from black_forest_labs import FluxPipeline # FluxPipelineのクラスはインポート元のモジュールに応じて変更 app = Flask(__name__) API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" API_TOKEN = os.getenv("HF_READ_TOKEN") headers = {"Authorization": f"Bearer {API_TOKEN}"} timeout = 50000 # タイムアウトを300秒に設定 # 初期化したFluxPipelineのオブジェクト pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) pipe.to(device="cuda", dtype=torch.bfloat16) # Function to load LoRA weights dynamically def load_lora_weights(pipe, lora_model_name, lora_scale=0.125): try: # Hugging Face Hubからの動的ダウンロード lora_weights_path = hf_hub_download(lora_model_name, filename="Hyper-FLUX.1-dev-8steps-lora.safetensors") pipe.load_lora_weights(lora_weights_path) pipe.fuse_lora(lora_scale=lora_scale) print(f"Loaded LoRA weights from {lora_model_name} with scale {lora_scale}") except Exception as e: print(f"Error loading LoRA weights: {e}") return f"Error loading LoRA weights: {e}" return None # Function to query the API and return the generated image def query(prompt, negative_prompt="", steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024, lora=None, lora_scale=0.125): if not prompt: return None, "Prompt is required" key = random.randint(0, 999) # Translate the prompt from Russian to English if necessary prompt = GoogleTranslator(source='ru', target='en').translate(prompt) print(f'Generation {key} translation: {prompt}') # LoRAが設定されている場合、ロードして適用 if lora: error = load_lora_weights(pipe, lora, lora_scale) if error: return None, error # Add some extra flair to the prompt prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." print(f'Generation {key}: {prompt}') # LoRA適用後、画像を生成 try: image = pipe(prompt, negative_prompt=negative_prompt, steps=steps, cfg_scale=cfg_scale, seed=seed, width=width, height=height, strength=strength).images[0] return image, None except Exception as e: return None, f"Error during image generation: {e}" # Content-Security-Policyヘッダーを設定するための関数 @app.after_request def add_security_headers(response): response.headers['Content-Security-Policy'] = ( "default-src 'self'; " "connect-src 'self' ^https?:\/\/[\w.-]+\.[\w.-]+(\/[\w.-]*)*(\?[^\s]*)?$" "img-src 'self' data:; " "style-src 'self' 'unsafe-inline'; " "script-src 'self' 'unsafe-inline'; " ) return response # HTML template for the index page index_html = """ """ @app.route('/') def index(): return render_template_string(index_html) @app.route('/generate', methods=['GET']) def generate_image(): prompt = request.args.get("prompt", "") negative_prompt = request.args.get("negative_prompt", "") steps = int(request.args.get("steps", 35)) cfg_scale = float(request.args.get("cfgs", 7)) sampler = request.args.get("sampler", "DPM++ 2M Karras") strength = float(request.args.get("strength", 0.7)) seed = int(request.args.get("seed", -1)) width = int(request.args.get("width", 1024)) height = int(request.args.get("height", 1024)) lora = request.args.get("lora", None) # loraパラメータの取得 lora_scale = float(request.args.get("lora_scale", 0.125)) # lora_scaleパラメータの取得 image, error = query(prompt, negative_prompt, steps, cfg_scale, sampler, seed, strength, width, height, lora, lora_scale) if error: return jsonify({"error": error}), 400 img_bytes = io.BytesIO() image.save(img_bytes, format='PNG') img_bytes.seek(0) return send_file(img_bytes, mimetype='image/png') if __name__ == "__main__": app.run(host='0.0.0.0', port=7860)