somewheresy
commited on
Commit
•
21bee4f
1
Parent(s):
a3225ba
Upload 4 files
Browse files
README.md
CHANGED
@@ -1,13 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: Dataclysm
|
3 |
-
emoji: 🐠
|
4 |
-
colorFrom: purple
|
5 |
-
colorTo: yellow
|
6 |
-
sdk: streamlit
|
7 |
-
sdk_version: 1.30.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: apache-2.0
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.log
ADDED
File without changes
|
app.py
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import necessary libraries
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
from sklearn.manifold import TSNE
|
6 |
+
from datasets import load_dataset, Dataset
|
7 |
+
from sklearn.cluster import KMeans
|
8 |
+
import plotly.graph_objects as go
|
9 |
+
import time
|
10 |
+
import logging
|
11 |
+
|
12 |
+
|
13 |
+
# Additional libraries for querying
|
14 |
+
from FlagEmbedding import FlagModel
|
15 |
+
|
16 |
+
# Global variables and dataset loading
|
17 |
+
global dataset_name
|
18 |
+
dataset_name = 'somewheresystems/dataclysm-arxiv'
|
19 |
+
st.session_state.dataclysm_arxiv = load_dataset(dataset_name, split="train")
|
20 |
+
total_samples = len(st.session_state.dataclysm_arxiv)
|
21 |
+
|
22 |
+
logging.basicConfig(filename='app.log', filemode='w', format='%(name)s - %(levelname)s - %(message)s', level=logging.INFO)
|
23 |
+
# Load the dataset once at the start
|
24 |
+
# Initialize the model for querying
|
25 |
+
model = FlagModel('BAAI/bge-small-en-v1.5', query_instruction_for_retrieval="Represent this sentence for searching relevant passages:", use_fp16=True)
|
26 |
+
|
27 |
+
|
28 |
+
def load_data(num_samples):
|
29 |
+
start_time = time.time()
|
30 |
+
dataset_name = 'somewheresystems/dataclysm-arxiv'
|
31 |
+
# Load the dataset
|
32 |
+
logging.info(f'Loading dataset...')
|
33 |
+
dataset = load_dataset(dataset_name)
|
34 |
+
total_samples = len(dataset['train'])
|
35 |
+
|
36 |
+
logging.info('Converting to pandas dataframe...')
|
37 |
+
# Convert the dataset to a pandas DataFrame
|
38 |
+
df = dataset['train'].to_pandas()
|
39 |
+
|
40 |
+
# Adjust num_samples if it's more than the total number of samples
|
41 |
+
num_samples = min(num_samples, total_samples)
|
42 |
+
st.sidebar.text(f'Number of samples: {num_samples} ({num_samples / total_samples:.2%} of total)')
|
43 |
+
|
44 |
+
# Randomly sample the dataframe
|
45 |
+
df = df.sample(n=num_samples)
|
46 |
+
|
47 |
+
# Assuming 'embeddings' column contains the embeddings
|
48 |
+
embeddings = df['title_embedding'].tolist()
|
49 |
+
print("embeddings length: " + str(len(embeddings)))
|
50 |
+
|
51 |
+
# Convert list of lists to numpy array
|
52 |
+
embeddings = np.array(embeddings, dtype=object)
|
53 |
+
end_time = time.time() # End timing
|
54 |
+
st.sidebar.text(f'Data loading completed in {end_time - start_time:.3f} seconds')
|
55 |
+
return df, embeddings
|
56 |
+
|
57 |
+
def perform_tsne(embeddings):
|
58 |
+
start_time = time.time()
|
59 |
+
logging.info('Performing t-SNE...')
|
60 |
+
|
61 |
+
n_samples = len(embeddings)
|
62 |
+
perplexity = min(30, n_samples - 1) if n_samples > 1 else 1
|
63 |
+
|
64 |
+
# Check if all embeddings have the same length
|
65 |
+
if len(set([len(embed) for embed in embeddings])) > 1:
|
66 |
+
raise ValueError("All embeddings should have the same length")
|
67 |
+
|
68 |
+
# Dimensionality Reduction with t-SNE
|
69 |
+
tsne = TSNE(n_components=3, perplexity=perplexity, n_iter=300)
|
70 |
+
|
71 |
+
# Create a placeholder for progress bar
|
72 |
+
progress_text = st.empty()
|
73 |
+
progress_text.text("t-SNE in progress...")
|
74 |
+
|
75 |
+
tsne_results = tsne.fit_transform(np.vstack(embeddings.tolist()))
|
76 |
+
|
77 |
+
# Update progress bar to indicate completion
|
78 |
+
progress_text.text(f"t-SNE completed. Processed {n_samples} samples with perplexity {perplexity}.")
|
79 |
+
end_time = time.time() # End timing
|
80 |
+
st.sidebar.text(f't-SNE completed in {end_time - start_time:.3f} seconds')
|
81 |
+
return tsne_results
|
82 |
+
|
83 |
+
|
84 |
+
def perform_clustering(df, tsne_results):
|
85 |
+
start_time = time.time()
|
86 |
+
# Perform KMeans clustering
|
87 |
+
logging.info('Performing k-means clustering...')
|
88 |
+
# Step 3: Visualization with Plotly
|
89 |
+
df['tsne-3d-one'] = tsne_results[:,0]
|
90 |
+
df['tsne-3d-two'] = tsne_results[:,1]
|
91 |
+
df['tsne-3d-three'] = tsne_results[:,2]
|
92 |
+
|
93 |
+
# Perform KMeans clustering
|
94 |
+
kmeans = KMeans(n_clusters=16) # Change the number of clusters as needed
|
95 |
+
df['cluster'] = kmeans.fit_predict(df[['tsne-3d-one', 'tsne-3d-two', 'tsne-3d-three']])
|
96 |
+
end_time = time.time() # End timing
|
97 |
+
st.sidebar.text(f'k-means clustering completed in {end_time - start_time:.3f} seconds')
|
98 |
+
return df
|
99 |
+
|
100 |
+
def main():
|
101 |
+
# Custom CSS
|
102 |
+
custom_css = """
|
103 |
+
<style>
|
104 |
+
/* Define the font */
|
105 |
+
@font-face {
|
106 |
+
font-family: 'F';
|
107 |
+
src: url('https://fonts.googleapis.com/css2?family=Martian+Mono&display=swap') format('truetype');
|
108 |
+
}
|
109 |
+
/* Apply the font to all elements */
|
110 |
+
* {
|
111 |
+
font-family: 'F', sans-serif !important;
|
112 |
+
color: #F8F8F8; /* Set the font color to F8F8F8 */
|
113 |
+
}
|
114 |
+
/* Add your CSS styles here */
|
115 |
+
h1 {
|
116 |
+
text-align: center;
|
117 |
+
}
|
118 |
+
h2,h3,h4 {
|
119 |
+
text-align: justify;
|
120 |
+
font-size: 8px
|
121 |
+
}
|
122 |
+
body {
|
123 |
+
text-align: justify;
|
124 |
+
}
|
125 |
+
.stSlider .css-1cpxqw2 {
|
126 |
+
background: #202020;
|
127 |
+
}
|
128 |
+
.stButton > button {
|
129 |
+
background-color: #202020;
|
130 |
+
width: 100%;
|
131 |
+
border: none;
|
132 |
+
padding: 10px 24px;
|
133 |
+
border-radius: 5px;
|
134 |
+
font-size: 16px;
|
135 |
+
font-weight: bold;
|
136 |
+
}
|
137 |
+
.reportview-container .main .block-container {
|
138 |
+
padding: 2rem;
|
139 |
+
background-color: #202020;
|
140 |
+
}
|
141 |
+
</style>
|
142 |
+
"""
|
143 |
+
|
144 |
+
# Inject custom CSS with markdown
|
145 |
+
st.markdown(custom_css, unsafe_allow_html=True)
|
146 |
+
st.sidebar.markdown(
|
147 |
+
f'<img src="https://www.somewhere.systems/S2-white-logo.png" style="float: bottom-left; width: 32px; height: 32px; opacity: 1.0; animation: fadein 2s;">',
|
148 |
+
unsafe_allow_html=True
|
149 |
+
)
|
150 |
+
st.sidebar.title('Spatial Search Engine')
|
151 |
+
|
152 |
+
# Check if data needs to be loaded
|
153 |
+
if 'data_loaded' not in st.session_state or not st.session_state.data_loaded:
|
154 |
+
# User input for number of samples
|
155 |
+
num_samples = st.sidebar.slider('Select number of samples', 1000, total_samples, 1000)
|
156 |
+
|
157 |
+
if st.sidebar.button('Initialize'):
|
158 |
+
st.sidebar.text('Initializing data pipeline...')
|
159 |
+
|
160 |
+
# Define a function to reshape the embeddings and add FAISS index if it doesn't exist
|
161 |
+
def reshape_and_add_faiss_index(dataset, column_name):
|
162 |
+
|
163 |
+
# Ensure the shape of the embedding is (1000, 384) and not (1000, 1, 384)
|
164 |
+
# As each row in title_embedding is shaped like this: [[-0.08477783203125, -0.009719848632812, ...]]
|
165 |
+
# We need to flatten it to [-0.08477783203125, -0.009719848632812, ...]
|
166 |
+
print(f"Flattening {column_name} and adding FAISS index...")
|
167 |
+
# Flatten the embeddings
|
168 |
+
dataset[column_name] = dataset[column_name].apply(lambda x: np.array(x).flatten())
|
169 |
+
# Add the FAISS index
|
170 |
+
dataset = Dataset.from_pandas(dataset).add_faiss_index(column=column_name)
|
171 |
+
print(f"FAISS index for {column_name} added.")
|
172 |
+
|
173 |
+
return dataset
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
# Load data and perform t-SNE and clustering
|
178 |
+
df, embeddings = load_data(num_samples)
|
179 |
+
|
180 |
+
# Combine embeddings and df back into one df
|
181 |
+
# Convert embeddings to list of lists before assigning to df
|
182 |
+
embeddings_list = [embedding.flatten().tolist() for embedding in embeddings]
|
183 |
+
df['title_embedding'] = embeddings_list
|
184 |
+
# Print the first few rows of the dataframe to check
|
185 |
+
print(df.head())
|
186 |
+
# Add FAISS indices for 'title_embedding'
|
187 |
+
st.session_state.dataclysm_title_indexed = reshape_and_add_faiss_index(df, 'title_embedding')
|
188 |
+
tsne_results = perform_tsne(embeddings)
|
189 |
+
df = perform_clustering(df, tsne_results)
|
190 |
+
# Store results in session state
|
191 |
+
st.session_state.df = df
|
192 |
+
st.session_state.tsne_results = tsne_results
|
193 |
+
st.session_state.data_loaded = True
|
194 |
+
|
195 |
+
# Create custom hover text
|
196 |
+
df['hovertext'] = df.apply(
|
197 |
+
lambda row: f"<b>Title:</b> {row['title']}<br><b>arXiv ID:</b> {row['id']}<br><b>Key:</b> {row.name}", axis=1
|
198 |
+
)
|
199 |
+
st.sidebar.text("Datasets loaded, titles indexed.")
|
200 |
+
|
201 |
+
# Create the plot
|
202 |
+
fig = go.Figure(data=[go.Scatter3d(
|
203 |
+
x=df['tsne-3d-one'],
|
204 |
+
y=df['tsne-3d-two'],
|
205 |
+
z=df['tsne-3d-three'],
|
206 |
+
mode='markers',
|
207 |
+
hovertext=df['hovertext'],
|
208 |
+
hoverinfo='text',
|
209 |
+
marker=dict(
|
210 |
+
size=1,
|
211 |
+
color=df['cluster'],
|
212 |
+
colorscale='Viridis',
|
213 |
+
opacity=0.8
|
214 |
+
)
|
215 |
+
)])
|
216 |
+
|
217 |
+
fig.update_layout(
|
218 |
+
plot_bgcolor='#202020',
|
219 |
+
height=800,
|
220 |
+
margin=dict(l=0, r=0, b=0, t=0),
|
221 |
+
scene=dict(
|
222 |
+
xaxis=dict(showbackground=True, backgroundcolor="#000000"),
|
223 |
+
yaxis=dict(showbackground=True, backgroundcolor="#000000"),
|
224 |
+
zaxis=dict(showbackground=True, backgroundcolor="#000000"),
|
225 |
+
),
|
226 |
+
scene_camera=dict(eye=dict(x=0.001, y=0.001, z=0.001))
|
227 |
+
)
|
228 |
+
st.session_state.fig = fig
|
229 |
+
|
230 |
+
# Display the plot if data is loaded
|
231 |
+
if 'data_loaded' in st.session_state and st.session_state.data_loaded:
|
232 |
+
st.plotly_chart(st.session_state.fig, use_container_width=True)
|
233 |
+
|
234 |
+
|
235 |
+
# Sidebar for detailed view
|
236 |
+
if 'df' in st.session_state:
|
237 |
+
# Sidebar for querying
|
238 |
+
with st.sidebar:
|
239 |
+
st.sidebar.markdown("### Query Embeddings")
|
240 |
+
query = st.text_input("Enter your query:")
|
241 |
+
if st.button("Search"):
|
242 |
+
# Define the model
|
243 |
+
print("Initializing model...")
|
244 |
+
model = FlagModel('BAAI/bge-small-en-v1.5',
|
245 |
+
query_instruction_for_retrieval="Represent this sentence for searching relevant passages:",
|
246 |
+
use_fp16=True)
|
247 |
+
print("Model initialized.")
|
248 |
+
|
249 |
+
query_embedding = model.encode([query])
|
250 |
+
# Retrieve examples by title similarity (or abstract, depending on your preference)
|
251 |
+
scores_title, retrieved_examples_title = st.session_state.dataclysm_title_indexed.get_nearest_examples('title_embedding', query_embedding, k=10)
|
252 |
+
df_query = pd.DataFrame(retrieved_examples_title)
|
253 |
+
df_query['proximity'] = scores_title
|
254 |
+
df_query = df_query.sort_values(by='proximity', ascending=True)
|
255 |
+
# Limit similarity score to 3 decimal points
|
256 |
+
df_query['proximity'] = df_query['proximity'].round(3)
|
257 |
+
# Fix the <a href link> to display properly
|
258 |
+
df_query['URL'] = df_query['id'].apply(lambda x: f'<a href="https://arxiv.org/abs/{x}" target="_blank">Link</a>')
|
259 |
+
st.sidebar.markdown(df_query[['title', 'proximity', 'id']].to_html(escape=False), unsafe_allow_html=True)
|
260 |
+
st.sidebar.markdown("# Detailed View")
|
261 |
+
selected_index = st.sidebar.selectbox("Select Key", st.session_state.df.id)
|
262 |
+
|
263 |
+
# Display metadata for the selected article
|
264 |
+
selected_row = st.session_state.df[st.session_state.df['id'] == selected_index].iloc[0]
|
265 |
+
st.markdown(f"### Title\n{selected_row['title']}", unsafe_allow_html=True)
|
266 |
+
st.markdown(f"### Abstract\n{selected_row['abstract']}", unsafe_allow_html=True)
|
267 |
+
st.markdown(f"[Read the full paper](https://arxiv.org/abs/{selected_row['id']})", unsafe_allow_html=True)
|
268 |
+
st.markdown(f"[Download PDF](https://arxiv.org/pdf/{selected_row['id']})", unsafe_allow_html=True)
|
269 |
+
|
270 |
+
|
271 |
+
|
272 |
+
if __name__ == "__main__":
|
273 |
+
main()
|
274 |
+
|
275 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.25.0
|
2 |
+
aiofiles==23.2.1
|
3 |
+
aiohttp==3.9.1
|
4 |
+
aiosignal==1.3.1
|
5 |
+
altair==5.2.0
|
6 |
+
annotated-types==0.6.0
|
7 |
+
anyio==4.2.0
|
8 |
+
apache-beam==2.52.0
|
9 |
+
appdirs==1.4.4
|
10 |
+
appnope==0.1.3
|
11 |
+
asgiref==3.7.2
|
12 |
+
astor==0.8.1
|
13 |
+
asttokens==2.4.1
|
14 |
+
attrs==23.2.0
|
15 |
+
backoff==2.2.1
|
16 |
+
beautifulsoup4==4.12.2
|
17 |
+
bitsandbytes==0.42.0
|
18 |
+
blessed==1.20.0
|
19 |
+
blinker==1.7.0
|
20 |
+
boto==2.49.0
|
21 |
+
build==1.0.3
|
22 |
+
CacheControl==0.13.1
|
23 |
+
cachetools==5.3.2
|
24 |
+
certifi==2023.11.17
|
25 |
+
|
26 |
+
charset-normalizer==3.3.2
|
27 |
+
ci-info==0.3.0
|
28 |
+
cleo==2.1.0
|
29 |
+
click==8.1.7
|
30 |
+
cloudpickle==2.2.1
|
31 |
+
colorama==0.4.6
|
32 |
+
comm==0.2.0
|
33 |
+
configobj==5.0.8
|
34 |
+
configparser==6.0.0
|
35 |
+
contourpy==1.2.0
|
36 |
+
crashtest==0.4.1
|
37 |
+
crcmod==1.7
|
38 |
+
cryptography==41.0.7
|
39 |
+
cycler==0.12.1
|
40 |
+
dataclasses==0.6
|
41 |
+
dataclasses-json==0.6.3
|
42 |
+
datasets==2.14.7
|
43 |
+
debugpy==1.8.0
|
44 |
+
decorator==5.1.1
|
45 |
+
Deprecated==1.2.14
|
46 |
+
dill==0.3.7
|
47 |
+
diskcache==5.6.3
|
48 |
+
distlib==0.3.8
|
49 |
+
distro==1.9.0
|
50 |
+
dnspython==2.4.2
|
51 |
+
docarray==0.40.0
|
52 |
+
docker==7.0.0
|
53 |
+
docker-pycreds==0.4.0
|
54 |
+
docopt==0.6.2
|
55 |
+
|
56 |
+
dulwich==0.21.7
|
57 |
+
ecdsa==0.18.0
|
58 |
+
editor==1.6.5
|
59 |
+
etelemetry==0.3.1
|
60 |
+
executing==2.0.1
|
61 |
+
faiss-cpu==1.7.4
|
62 |
+
fastapi==0.108.0
|
63 |
+
fastavro==1.9.2
|
64 |
+
fasteners==0.19
|
65 |
+
fastjsonschema==2.19.1
|
66 |
+
filelock==3.13.1
|
67 |
+
fitz==0.0.1.dev2
|
68 |
+
FlagEmbedding==1.1.8
|
69 |
+
fonttools==4.47.0
|
70 |
+
frontend==0.0.3
|
71 |
+
frozenlist==1.4.1
|
72 |
+
fsspec==2023.10.0
|
73 |
+
future==0.18.3
|
74 |
+
gcs-oauth2-boto-plugin==3.0
|
75 |
+
git-python==1.0.3
|
76 |
+
gitdb==4.0.11
|
77 |
+
GitPython==3.1.40
|
78 |
+
google-apitools==0.5.32
|
79 |
+
google-auth==2.26.2
|
80 |
+
google-reauth==0.1.1
|
81 |
+
googleapis-common-protos==1.62.0
|
82 |
+
greenlet==3.0.3
|
83 |
+
grpcio==1.57.0
|
84 |
+
grpcio-health-checking==1.57.0
|
85 |
+
grpcio-reflection==1.57.0
|
86 |
+
gsutil==5.27
|
87 |
+
h11==0.14.0
|
88 |
+
hdfs==2.7.3
|
89 |
+
hf_transfer==0.1.4
|
90 |
+
html2image==2.0.4.3
|
91 |
+
httpcore==1.0.2
|
92 |
+
httplib2==0.20.4
|
93 |
+
httptools==0.6.1
|
94 |
+
httpx==0.26.0
|
95 |
+
huggingface-hub==0.17.3
|
96 |
+
idna==3.6
|
97 |
+
importlib-metadata==6.11.0
|
98 |
+
inquirer==3.2.1
|
99 |
+
installer==0.7.0
|
100 |
+
isodate==0.6.1
|
101 |
+
itsdangerous==2.1.2
|
102 |
+
jaraco.classes==3.3.0
|
103 |
+
jcloud==0.3
|
104 |
+
jedi==0.19.1
|
105 |
+
jina==3.23.2
|
106 |
+
jina-hubble-sdk==0.39.0
|
107 |
+
Jinja2==3.1.2
|
108 |
+
joblib==1.3.2
|
109 |
+
Js2Py==0.74
|
110 |
+
jsonschema==4.20.0
|
111 |
+
jsonschema-specifications==2023.12.1
|
112 |
+
jupyter_client==8.6.0
|
113 |
+
jupyter_core==5.5.1
|
114 |
+
keyring==24.3.0
|
115 |
+
kiwisolver==1.4.5
|
116 |
+
litellm==1.16.19
|
117 |
+
llama-index==0.9.24
|
118 |
+
llama_cpp_python==0.2.26
|
119 |
+
looseversion==1.3.0
|
120 |
+
lxml==5.0.0
|
121 |
+
markdown-it-py==3.0.0
|
122 |
+
MarkupSafe==2.1.3
|
123 |
+
marshmallow==3.20.1
|
124 |
+
matplotlib==3.8.2
|
125 |
+
matplotlib-inline==0.1.6
|
126 |
+
mdurl==0.1.2
|
127 |
+
|
128 |
+
monotonic==1.6
|
129 |
+
more-itertools==10.1.0
|
130 |
+
MouseInfo==0.1.3
|
131 |
+
mpmath==1.3.0
|
132 |
+
msgpack==1.0.7
|
133 |
+
multidict==6.0.4
|
134 |
+
multiprocess==0.70.15
|
135 |
+
mwparserfromhell==0.6.5
|
136 |
+
mypy-extensions==1.0.0
|
137 |
+
nest-asyncio==1.5.8
|
138 |
+
networkx==3.2.1
|
139 |
+
nibabel==5.2.0
|
140 |
+
nipype==1.8.6
|
141 |
+
nltk==3.8.1
|
142 |
+
numpy==1.26.2
|
143 |
+
oauth2client==4.1.3
|
144 |
+
objsize==0.6.1
|
145 |
+
open-interpreter==0.2.0
|
146 |
+
openai==1.6.1
|
147 |
+
opencv-python==4.9.0.80
|
148 |
+
opentelemetry-api==1.19.0
|
149 |
+
opentelemetry-exporter-otlp==1.19.0
|
150 |
+
opentelemetry-exporter-otlp-proto-common==1.19.0
|
151 |
+
opentelemetry-exporter-otlp-proto-grpc==1.19.0
|
152 |
+
opentelemetry-exporter-otlp-proto-http==1.19.0
|
153 |
+
opentelemetry-exporter-prometheus==0.41b0
|
154 |
+
opentelemetry-instrumentation==0.40b0
|
155 |
+
opentelemetry-instrumentation-aiohttp-client==0.40b0
|
156 |
+
opentelemetry-instrumentation-asgi==0.40b0
|
157 |
+
opentelemetry-instrumentation-fastapi==0.40b0
|
158 |
+
opentelemetry-instrumentation-grpc==0.40b0
|
159 |
+
opentelemetry-proto==1.19.0
|
160 |
+
opentelemetry-sdk==1.19.0
|
161 |
+
opentelemetry-semantic-conventions==0.40b0
|
162 |
+
opentelemetry-util-http==0.40b0
|
163 |
+
orjson==3.9.10
|
164 |
+
packaging==23.2
|
165 |
+
pandas==2.1.4
|
166 |
+
parso==0.8.3
|
167 |
+
pathlib==1.0.1
|
168 |
+
pathspec==0.12.1
|
169 |
+
pdfminer.six==20221105
|
170 |
+
pdfplumber==0.10.3
|
171 |
+
peft==0.7.1
|
172 |
+
pexpect==4.9.0
|
173 |
+
Pillow==10.1.0
|
174 |
+
pkginfo==1.9.6
|
175 |
+
platformdirs==4.0.0
|
176 |
+
plotly==5.18.0
|
177 |
+
plyer==2.1.0
|
178 |
+
poetry==1.7.1
|
179 |
+
poetry-core==1.8.1
|
180 |
+
poetry-plugin-export==1.6.0
|
181 |
+
posthog==3.1.0
|
182 |
+
pretty-traceback==2023.1020
|
183 |
+
prometheus-client==0.19.0
|
184 |
+
prompt-toolkit==3.0.43
|
185 |
+
proto-plus==1.23.0
|
186 |
+
protobuf==4.25.1
|
187 |
+
prov==2.0.0
|
188 |
+
psutil==5.9.7
|
189 |
+
ptyprocess==0.7.0
|
190 |
+
pure-eval==0.2.2
|
191 |
+
pyarrow==11.0.0
|
192 |
+
pyarrow-hotfix==0.6
|
193 |
+
pyasn1==0.5.1
|
194 |
+
pyasn1-modules==0.3.0
|
195 |
+
PyAutoGUI==0.9.54
|
196 |
+
|
197 |
+
pydantic==2.5.3
|
198 |
+
pydantic-settings==2.1.0
|
199 |
+
pydantic_core==2.14.6
|
200 |
+
pydeck==0.8.1b0
|
201 |
+
pydot==1.4.2
|
202 |
+
PyGetWindow==0.0.9
|
203 |
+
Pygments==2.17.2
|
204 |
+
pyjsparser==2.7.1
|
205 |
+
PyMonCtl==0.7
|
206 |
+
pymongo==4.6.1
|
207 |
+
PyMsgBox==1.0.9
|
208 |
+
pyopencl==2023.1.4
|
209 |
+
pyOpenSSL==23.3.0
|
210 |
+
pypandoc==1.12
|
211 |
+
pyparsing==3.1.1
|
212 |
+
pypdf==3.17.4
|
213 |
+
PyPDF2==3.0.1
|
214 |
+
pypdfium2==4.25.0
|
215 |
+
pyperclip==1.8.2
|
216 |
+
pyproject_hooks==1.0.0
|
217 |
+
PyRect==0.2.0
|
218 |
+
PyScreeze==0.1.30
|
219 |
+
pytesseract==0.3.10
|
220 |
+
python-dateutil==2.8.2
|
221 |
+
python-dotenv==1.0.0
|
222 |
+
python-jose==3.3.0
|
223 |
+
python-multipart==0.0.6
|
224 |
+
pytils==0.4.1
|
225 |
+
pytools==2023.1.1
|
226 |
+
pytweening==1.0.7
|
227 |
+
pytz==2023.3.post1
|
228 |
+
pyu2f==0.1.5
|
229 |
+
PyWinBox==0.6
|
230 |
+
PyWinCtl==0.3
|
231 |
+
pyxnat==1.6
|
232 |
+
PyYAML==6.0.1
|
233 |
+
pyzmq==25.1.2
|
234 |
+
rapidfuzz==3.6.1
|
235 |
+
ray==2.9.0
|
236 |
+
rdflib==7.0.0
|
237 |
+
readchar==4.0.5
|
238 |
+
referencing==0.32.0
|
239 |
+
regex==2023.12.25
|
240 |
+
requests==2.31.0
|
241 |
+
requests-toolbelt==1.0.0
|
242 |
+
retry-decorator==1.1.1
|
243 |
+
rich==13.7.0
|
244 |
+
rpds-py==0.16.2
|
245 |
+
rsa==4.7.2
|
246 |
+
rubicon-objc==0.4.7
|
247 |
+
runs==1.2.0
|
248 |
+
safetensors==0.4.1
|
249 |
+
scikit-learn==1.3.2
|
250 |
+
scipy==1.11.4
|
251 |
+
sentence-transformers==2.2.2
|
252 |
+
sentencepiece==0.1.99
|
253 |
+
sentry-sdk==1.39.2
|
254 |
+
setproctitle==1.3.3
|
255 |
+
shellingham==1.5.4
|
256 |
+
simplejson==3.19.2
|
257 |
+
six==1.16.0
|
258 |
+
smmap==5.0.1
|
259 |
+
sniffio==1.3.0
|
260 |
+
soupsieve==2.5
|
261 |
+
SQLAlchemy==2.0.24
|
262 |
+
sse-starlette==1.8.2
|
263 |
+
stack-data==0.6.3
|
264 |
+
starlette==0.32.0.post1
|
265 |
+
starlette-context==0.3.6
|
266 |
+
streamlit==1.30.0
|
267 |
+
sympy==1.12
|
268 |
+
tenacity==8.2.3
|
269 |
+
threadpoolctl==3.2.0
|
270 |
+
tiktoken==0.4.0
|
271 |
+
tinygrad==0.7.0
|
272 |
+
tokenizers==0.14.1
|
273 |
+
tokentrim==0.1.13
|
274 |
+
toml==0.10.2
|
275 |
+
tomlkit==0.12.3
|
276 |
+
tools==0.1.9
|
277 |
+
tornado==6.4
|
278 |
+
tqdm==4.66.1
|
279 |
+
traitlets==5.14.0
|
280 |
+
traits==6.3.2
|
281 |
+
transformers==4.34.0
|
282 |
+
trove-classifiers==2023.11.29
|
283 |
+
types-requests==2.31.0.6
|
284 |
+
types-urllib3==1.26.25.14
|
285 |
+
typing-inspect==0.9.0
|
286 |
+
typing_extensions==4.9.0
|
287 |
+
tzdata==2023.4
|
288 |
+
tzlocal==5.2
|
289 |
+
urllib3==2.1.0
|
290 |
+
uvicorn==0.24.0.post1
|
291 |
+
uvloop==0.19.0
|
292 |
+
validators==0.22.0
|
293 |
+
virtualenv==20.25.0
|
294 |
+
wandb==0.16.2
|
295 |
+
watchdog==3.0.0
|
296 |
+
watchfiles==0.21.0
|
297 |
+
wcwidth==0.2.12
|
298 |
+
websocket-client==1.7.0
|
299 |
+
websockets==12.0
|
300 |
+
wget==3.2
|
301 |
+
wrapt==1.16.0
|
302 |
+
xattr==0.10.1
|
303 |
+
xmod==1.8.1
|
304 |
+
xxhash==3.4.1
|
305 |
+
yarl==1.9.4
|
306 |
+
youtube-dl==2021.12.17
|
307 |
+
zipp==3.17.0
|
308 |
+
zstandard==0.22.0
|