Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
def classify_sentiment(audio, model): | |
pipe = pipeline("audio-classification", model=model) | |
pred = pipe(audio) | |
return {dic["label"]: dic["score"] for dic in pred} | |
input_audio = [gr.inputs.Audio(source="microphone", type="filepath", label="Record/ Drop audio"), gr.inputs.Dropdown(["hackathon-pln-es/wav2vec2-base-finetuned-sentiment-classification-MESD", "hackathon-pln-es/wav2vec2-base-finetuned-sentiment-mesd"], label="Model Name")] | |
label = gr.outputs.Label(num_top_classes=5) | |
################### Gradio Web APP ################################ | |
title = "Audio Sentiment Classifier" | |
description = """ | |
<p> | |
<center> | |
This application classifies the sentiment of the audio input provided by the user. | |
#</center> | |
#</p> | |
#<center> | |
#<img src="https://huggingface.co/spaces/hackathon-pln-es/Audio-Sentiment-Classifier/tree/main/sentiment.jpg" alt="logo" width="750"/> | |
#<img src="https://huggingface.co/spaces/hackathon-pln-es/Audio-Sentiment-Classifier/tree/main/sentiment.jpg" style="max-width: 100%; max-height: 10%; height: 250px; object-fit: fill"> | |
</center> | |
""" | |
gr.Interface( | |
fn = classify_sentiment, | |
inputs = input_audio, | |
outputs = label, | |
#examples=[["test1.wav", "hackathon-pln-es/wav2vec2-base-finetuned-sentiment-classification-MESD"], ["test2.wav", "hackathon-pln-es/wav2vec2-base-finetuned-sentiment-mesd"]], | |
theme="grass").launch() | |