import gradio as gr from transformers import pipeline pipe = pipeline(model="hackathon-pln-es/wav2vec2-base-finetuned-sentiment-mesd") def classify_sentiment(audio): sentiment_classifier = pipe(audio) return sentiment_classifier input_audio = [gr.inputs.Audio(source="microphone", type="filepath", label="Record/ Drop audio"), gr.inputs.Dropdown(["DrishtiSharma/wav2vec2-base-finetuned-sentiment-mesd-v11", "hackathon-pln-es/wav2vec2-base-finetuned-sentiment-mesd"], label="Model Name")] label = gr.outputs.Label(num_top_classes=5) gr.Interface( fn = classify_sentiment, inputs = input_audio, outputs = label, examples=[["test1.wav", "DrishtiSharma/wav2vec2-base-finetuned-sentiment-mesd-v11"], ["test2.wav", "hackathon-pln-es/wav2vec2-base-finetuned-sentiment-mesd"]], theme="grass").launch()