from reader import get_article import gradio as gr from transformers import pipeline info = get_article() #Model_1 = "hackathon-pln-es/wav2vec2-base-finetuned-sentiment-classification-MESD" #Model_2 ="hackathon-pln-es/wav2vec2-base-finetuned-sentiment-mesd" #model_name2id = {"Model A": "hackathon-pln-es/wav2vec2-base-finetuned-sentiment-classification-MESD", "Model B": "hackathon-pln-es/wav2vec2-base-finetuned-sentiment-mesd"} def classify_sentiment(audio): pipe = pipeline("audio-classification", model="hackathon-pln-es/wav2vec2-base-finetuned-sentiment-classification-MESD") pred = pipe(audio) return {dic["label"]: dic["score"] for dic in pred} input_audio = [gr.inputs.Audio(source="microphone", type="filepath", label="Record/ Drop audio")] label = gr.outputs.Label(num_top_classes=5) ################### Gradio Web APP ################################ #title = "Audio Sentiment Classifier" description = """