File size: 11,672 Bytes
ed7a497 7ba54e9 ed7a497 7ba54e9 ed7a497 7ba54e9 ed7a497 7ba54e9 ed7a497 7ba54e9 ed7a497 7ba54e9 ed7a497 7ba54e9 ed7a497 7ba54e9 ed7a497 7ba54e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import sys
import os
import pandas as pd
import argparse
default_cuda_devices = "0"
if len(sys.argv) > 1:
argument = sys.argv[1]
if argument == '4':
argument = default_cuda_devices
else:
argument = default_cuda_devices
os.environ["CUDA_VISIBLE_DEVICES"] = argument
import numpy as np
import os
import torchaudio
import fire
import json
import torch
from tqdm import tqdm
import time
import torchvision
from peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
prepare_model_for_int8_training,
set_peft_model_state_dict,
)
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer, LlamaConfig
from utils.prompter import Prompter
device = "cuda" if torch.cuda.is_available() else "cpu"
parser = argparse.ArgumentParser()
parser.add_argument('--input_csv', type=str, required=True, help='Path to the input file')
parser.add_argument('--output_csv', type=str, required=True, help='Path to the output file')
args = parser.parse_args()
def int16_to_float32_torch(x):
return (x / 32767.0).type(torch.float32)
def float32_to_int16_torch(x):
x = torch.clamp(x, min=-1., max=1.)
return (x * 32767.).type(torch.int16)
def get_mel(audio_data):
# mel shape: (n_mels, T)
mel_tf = torchaudio.transforms.MelSpectrogram(
sample_rate=48000,
n_fft=1024,
win_length=1024,
hop_length=480,
center=True,
pad_mode="reflect",
power=2.0,
norm=None,
onesided=True,
n_mels=64,
f_min=50,
f_max=14000
).to(audio_data.device)
mel = mel_tf(audio_data)
# we use log mel spectrogram as input
mel = torchaudio.transforms.AmplitudeToDB(top_db=None)(mel)
return mel.T # (T, n_mels)
def get_audio_features(sample, audio_data, max_len, data_truncating, data_filling, require_grad=False):
grad_fn = suppress if require_grad else torch.no_grad
with grad_fn():
if len(audio_data) > max_len:
if data_truncating == "rand_trunc":
longer = torch.tensor([True])
elif data_truncating == "fusion":
# fusion
mel = get_mel(audio_data)
# split to three parts
chunk_frames = max_len // 480 + 1 # the +1 related to how the spectrogram is computed
total_frames = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is
# larger than max_len but smaller than max_len+hop_size.
# In this case, we just use the whole audio.
mel_fusion = torch.stack([mel, mel, mel, mel], dim=0)
sample["mel_fusion"] = mel_fusion
longer = torch.tensor([False])
else:
ranges = np.array_split(list(range(0, total_frames - chunk_frames + 1)), 3)
# print('total_frames-chunk_frames:', total_frames-chunk_frames,
# 'len(audio_data):', len(audio_data),
# 'chunk_frames:', chunk_frames,
# 'total_frames:', total_frames)
if len(ranges[1]) == 0:
# if the audio is too short, we just use the first chunk
ranges[1] = [0]
if len(ranges[2]) == 0:
# if the audio is too short, we just use the first chunk
ranges[2] = [0]
# randomly choose index for each part
idx_front = np.random.choice(ranges[0])
idx_middle = np.random.choice(ranges[1])
idx_back = np.random.choice(ranges[2])
# select mel
mel_chunk_front = mel[idx_front:idx_front + chunk_frames, :]
mel_chunk_middle = mel[idx_middle:idx_middle + chunk_frames, :]
mel_chunk_back = mel[idx_back:idx_back + chunk_frames, :]
# shrink the mel
mel_shrink = torchvision.transforms.Resize(size=[chunk_frames, 64])(mel[None])[0]
# logging.info(f"mel_shrink.shape: {mel_shrink.shape}")
# stack
mel_fusion = torch.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], dim=0)
sample["mel_fusion"] = mel_fusion #.unsqueeze(0)
longer = torch.tensor([True])
else:
raise NotImplementedError(
f"data_truncating {data_truncating} not implemented"
)
# random crop to max_len (for compatibility)
overflow = len(audio_data) - max_len
idx = np.random.randint(0, overflow + 1)
audio_data = audio_data[idx: idx + max_len]
else: # padding if too short
if len(audio_data) < max_len: # do nothing if equal
if data_filling == "repeatpad":
n_repeat = int(max_len / len(audio_data))
audio_data = audio_data.repeat(n_repeat)
# audio_data = audio_data.unsqueeze(0).unsqueeze(0).unsqueeze(0)
# audio_data = F.interpolate(audio_data,size=max_len,mode="bicubic")[0,0,0]
audio_data = F.pad(
audio_data,
(0, max_len - len(audio_data)),
mode="constant",
value=0,
)
elif data_filling == "pad":
audio_data = F.pad(
audio_data,
(0, max_len - len(audio_data)),
mode="constant",
value=0,
)
elif data_filling == "repeat":
n_repeat = int(max_len / len(audio_data))
audio_data = audio_data.repeat(n_repeat + 1)[:max_len]
else:
raise NotImplementedError(
f"data_filling {data_filling} not implemented"
)
if data_truncating == 'fusion':
mel = get_mel(audio_data)
mel_fusion = torch.stack([mel, mel, mel, mel], dim=0)
sample["mel_fusion"] = mel_fusion
longer = torch.tensor([False])
sample["longer"] = longer
sample["waveform"] = audio_data
sample["mel_fusion"] = sample["mel_fusion"].unsqueeze(0)
# print(sample["mel_fusion"].shape)
# print("---------------------")
return sample
def load_audio(filename):
waveform, sr = torchaudio.load(filename)
if sr != 16000:
waveform = torchaudio.functional.resample(waveform=waveform, orig_freq=sr, new_freq=16000)
sr = 16000
waveform = waveform - waveform.mean()
fbank = torchaudio.compliance.kaldi.fbank(waveform, htk_compat=True, sample_frequency=sr,
use_energy=False, window_type='hanning',
num_mel_bins=128, dither=0.0, frame_shift=10)
target_length = 1024
n_frames = fbank.shape[0]
p = target_length - n_frames
if p > 0:
m = torch.nn.ZeroPad2d((0, 0, 0, p))
fbank = m(fbank)
elif p < 0:
fbank = fbank[0:target_length, :]
# normalize the fbank
fbank = (fbank + 5.081) / 4.4849
return fbank
root_dir = '/fs/nexus-projects'
def main(
base_model: str = "/fs/nexus-projects/brain_project/Llama-2-7b-chat-hf-qformer",
prompt_template: str = "alpaca_short", # The prompt template to use, will default to alpaca.
):
base_model = base_model or os.environ.get("BASE_MODEL", "")
assert (
base_model
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
prompter = Prompter(prompt_template)
tokenizer = LlamaTokenizer.from_pretrained(base_model)
# model = LlamaForCausalLM.from_pretrained(base_model, device_map="auto")
model = LlamaForCausalLM.from_pretrained(base_model, device_map="auto") #, torch_dtype=torch.bfloat16
config = LoraConfig(
r=8,
lora_alpha=16,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.0,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
temp, top_p, top_k = 0.1, 0.95, 500
# change it to your model path
eval_root_path = ""
eval_mdl_path = '/fs/gamma-projects/audio/gama/new_data_no_aggr/stage4_all_mix_new/checkpoint-46800//pytorch_model.bin'
state_dict = torch.load(eval_mdl_path, map_location='cpu')
msg = model.load_state_dict(state_dict, strict=False)
model.is_parallelizable = True
model.model_parallel = True
# unwind broken decapoda-research config
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
model.eval()
file = pd.read_csv(args.input_csv) #pd.read_csv('/fs/nexus-projects/brain_project/aaai_2025/tut_urban_merged.csv')
file = file.head()
tmp_path = []
tmp_caption = []
tmp_dataset = []
tmp_split_name = []
for i in tqdm(range(len(file))):
audio_path = file['path'][i]
instruction = "Write a caption for the audio in AudioCaps style."
prompt = prompter.generate_prompt(instruction, None)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
if audio_path != 'empty':
cur_audio_input = load_audio(audio_path).unsqueeze(0)
if torch.cuda.is_available() == False:
pass
else:
cur_audio_input = cur_audio_input.to(device)
else:
cur_audio_input = None
generation_config = GenerationConfig(
do_sample=True,
temperature=temp,
top_p=top_p,
top_k=top_k,
repetition_penalty=1.1,
max_new_tokens=400,
bos_token_id=model.config.bos_token_id,
eos_token_id=model.config.eos_token_id,
pad_token_id=model.config.pad_token_id,
num_return_sequences=1
)
# Without streaming
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids.to(device),
audio_input=cur_audio_input,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=400,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)[6:-4]
output = output[len(prompt):]
# print('----------------------')
print(output)
tmp_path.append(audio_path)
tmp_caption.append(output)
tmp_dataset.append(file['dataset'][i])
tmp_split_name.append(file['split_name'][i])
df = pd.DataFrame()
df['path'] = tmp_path
df['caption'] = tmp_caption
df.to_csv(args.output_csv,index=False)
if __name__ == "__main__":
fire.Fire(main(args))
|