Spaces:
sonalkum
/
Running on Zero

GAMA-IT / gama_csv_inf.py
sonalkum's picture
llama-ckpts
7ba54e9
raw
history blame
11.7 kB
import sys
import os
import pandas as pd
import argparse
default_cuda_devices = "0"
if len(sys.argv) > 1:
argument = sys.argv[1]
if argument == '4':
argument = default_cuda_devices
else:
argument = default_cuda_devices
os.environ["CUDA_VISIBLE_DEVICES"] = argument
import numpy as np
import os
import torchaudio
import fire
import json
import torch
from tqdm import tqdm
import time
import torchvision
from peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
prepare_model_for_int8_training,
set_peft_model_state_dict,
)
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer, LlamaConfig
from utils.prompter import Prompter
device = "cuda" if torch.cuda.is_available() else "cpu"
parser = argparse.ArgumentParser()
parser.add_argument('--input_csv', type=str, required=True, help='Path to the input file')
parser.add_argument('--output_csv', type=str, required=True, help='Path to the output file')
args = parser.parse_args()
def int16_to_float32_torch(x):
return (x / 32767.0).type(torch.float32)
def float32_to_int16_torch(x):
x = torch.clamp(x, min=-1., max=1.)
return (x * 32767.).type(torch.int16)
def get_mel(audio_data):
# mel shape: (n_mels, T)
mel_tf = torchaudio.transforms.MelSpectrogram(
sample_rate=48000,
n_fft=1024,
win_length=1024,
hop_length=480,
center=True,
pad_mode="reflect",
power=2.0,
norm=None,
onesided=True,
n_mels=64,
f_min=50,
f_max=14000
).to(audio_data.device)
mel = mel_tf(audio_data)
# we use log mel spectrogram as input
mel = torchaudio.transforms.AmplitudeToDB(top_db=None)(mel)
return mel.T # (T, n_mels)
def get_audio_features(sample, audio_data, max_len, data_truncating, data_filling, require_grad=False):
grad_fn = suppress if require_grad else torch.no_grad
with grad_fn():
if len(audio_data) > max_len:
if data_truncating == "rand_trunc":
longer = torch.tensor([True])
elif data_truncating == "fusion":
# fusion
mel = get_mel(audio_data)
# split to three parts
chunk_frames = max_len // 480 + 1 # the +1 related to how the spectrogram is computed
total_frames = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is
# larger than max_len but smaller than max_len+hop_size.
# In this case, we just use the whole audio.
mel_fusion = torch.stack([mel, mel, mel, mel], dim=0)
sample["mel_fusion"] = mel_fusion
longer = torch.tensor([False])
else:
ranges = np.array_split(list(range(0, total_frames - chunk_frames + 1)), 3)
# print('total_frames-chunk_frames:', total_frames-chunk_frames,
# 'len(audio_data):', len(audio_data),
# 'chunk_frames:', chunk_frames,
# 'total_frames:', total_frames)
if len(ranges[1]) == 0:
# if the audio is too short, we just use the first chunk
ranges[1] = [0]
if len(ranges[2]) == 0:
# if the audio is too short, we just use the first chunk
ranges[2] = [0]
# randomly choose index for each part
idx_front = np.random.choice(ranges[0])
idx_middle = np.random.choice(ranges[1])
idx_back = np.random.choice(ranges[2])
# select mel
mel_chunk_front = mel[idx_front:idx_front + chunk_frames, :]
mel_chunk_middle = mel[idx_middle:idx_middle + chunk_frames, :]
mel_chunk_back = mel[idx_back:idx_back + chunk_frames, :]
# shrink the mel
mel_shrink = torchvision.transforms.Resize(size=[chunk_frames, 64])(mel[None])[0]
# logging.info(f"mel_shrink.shape: {mel_shrink.shape}")
# stack
mel_fusion = torch.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], dim=0)
sample["mel_fusion"] = mel_fusion #.unsqueeze(0)
longer = torch.tensor([True])
else:
raise NotImplementedError(
f"data_truncating {data_truncating} not implemented"
)
# random crop to max_len (for compatibility)
overflow = len(audio_data) - max_len
idx = np.random.randint(0, overflow + 1)
audio_data = audio_data[idx: idx + max_len]
else: # padding if too short
if len(audio_data) < max_len: # do nothing if equal
if data_filling == "repeatpad":
n_repeat = int(max_len / len(audio_data))
audio_data = audio_data.repeat(n_repeat)
# audio_data = audio_data.unsqueeze(0).unsqueeze(0).unsqueeze(0)
# audio_data = F.interpolate(audio_data,size=max_len,mode="bicubic")[0,0,0]
audio_data = F.pad(
audio_data,
(0, max_len - len(audio_data)),
mode="constant",
value=0,
)
elif data_filling == "pad":
audio_data = F.pad(
audio_data,
(0, max_len - len(audio_data)),
mode="constant",
value=0,
)
elif data_filling == "repeat":
n_repeat = int(max_len / len(audio_data))
audio_data = audio_data.repeat(n_repeat + 1)[:max_len]
else:
raise NotImplementedError(
f"data_filling {data_filling} not implemented"
)
if data_truncating == 'fusion':
mel = get_mel(audio_data)
mel_fusion = torch.stack([mel, mel, mel, mel], dim=0)
sample["mel_fusion"] = mel_fusion
longer = torch.tensor([False])
sample["longer"] = longer
sample["waveform"] = audio_data
sample["mel_fusion"] = sample["mel_fusion"].unsqueeze(0)
# print(sample["mel_fusion"].shape)
# print("---------------------")
return sample
def load_audio(filename):
waveform, sr = torchaudio.load(filename)
if sr != 16000:
waveform = torchaudio.functional.resample(waveform=waveform, orig_freq=sr, new_freq=16000)
sr = 16000
waveform = waveform - waveform.mean()
fbank = torchaudio.compliance.kaldi.fbank(waveform, htk_compat=True, sample_frequency=sr,
use_energy=False, window_type='hanning',
num_mel_bins=128, dither=0.0, frame_shift=10)
target_length = 1024
n_frames = fbank.shape[0]
p = target_length - n_frames
if p > 0:
m = torch.nn.ZeroPad2d((0, 0, 0, p))
fbank = m(fbank)
elif p < 0:
fbank = fbank[0:target_length, :]
# normalize the fbank
fbank = (fbank + 5.081) / 4.4849
return fbank
root_dir = '/fs/nexus-projects'
def main(
base_model: str = "/fs/nexus-projects/brain_project/Llama-2-7b-chat-hf-qformer",
prompt_template: str = "alpaca_short", # The prompt template to use, will default to alpaca.
):
base_model = base_model or os.environ.get("BASE_MODEL", "")
assert (
base_model
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
prompter = Prompter(prompt_template)
tokenizer = LlamaTokenizer.from_pretrained(base_model)
# model = LlamaForCausalLM.from_pretrained(base_model, device_map="auto")
model = LlamaForCausalLM.from_pretrained(base_model, device_map="auto") #, torch_dtype=torch.bfloat16
config = LoraConfig(
r=8,
lora_alpha=16,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.0,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
temp, top_p, top_k = 0.1, 0.95, 500
# change it to your model path
eval_root_path = ""
eval_mdl_path = '/fs/gamma-projects/audio/gama/new_data_no_aggr/stage4_all_mix_new/checkpoint-46800//pytorch_model.bin'
state_dict = torch.load(eval_mdl_path, map_location='cpu')
msg = model.load_state_dict(state_dict, strict=False)
model.is_parallelizable = True
model.model_parallel = True
# unwind broken decapoda-research config
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
model.eval()
file = pd.read_csv(args.input_csv) #pd.read_csv('/fs/nexus-projects/brain_project/aaai_2025/tut_urban_merged.csv')
file = file.head()
tmp_path = []
tmp_caption = []
tmp_dataset = []
tmp_split_name = []
for i in tqdm(range(len(file))):
audio_path = file['path'][i]
instruction = "Write a caption for the audio in AudioCaps style."
prompt = prompter.generate_prompt(instruction, None)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
if audio_path != 'empty':
cur_audio_input = load_audio(audio_path).unsqueeze(0)
if torch.cuda.is_available() == False:
pass
else:
cur_audio_input = cur_audio_input.to(device)
else:
cur_audio_input = None
generation_config = GenerationConfig(
do_sample=True,
temperature=temp,
top_p=top_p,
top_k=top_k,
repetition_penalty=1.1,
max_new_tokens=400,
bos_token_id=model.config.bos_token_id,
eos_token_id=model.config.eos_token_id,
pad_token_id=model.config.pad_token_id,
num_return_sequences=1
)
# Without streaming
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids.to(device),
audio_input=cur_audio_input,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=400,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)[6:-4]
output = output[len(prompt):]
# print('----------------------')
print(output)
tmp_path.append(audio_path)
tmp_caption.append(output)
tmp_dataset.append(file['dataset'][i])
tmp_split_name.append(file['split_name'][i])
df = pd.DataFrame()
df['path'] = tmp_path
df['caption'] = tmp_caption
df.to_csv(args.output_csv,index=False)
if __name__ == "__main__":
fire.Fire(main(args))