Songwei Ge
demo
9d776c8
raw
history blame
9.05 kB
import math
import random
import os
import json
import time
import argparse
import torch
import numpy as np
from torchvision import transforms
from models.region_diffusion import RegionDiffusion
from utils.attention_utils import get_token_maps
from utils.richtext_utils import seed_everything, parse_json, get_region_diffusion_input,\
get_attention_control_input, get_gradient_guidance_input
import gradio as gr
from PIL import Image, ImageOps
help_text = """
Instructions placeholder.
"""
def main():
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = RegionDiffusion(device)
def generate(
json.loads(text_input): str,
negative_text: str,
height: int,
width: int,
seed: int,
steps: int,
guidance_weight: float,
):
run_dir = 'results/'
# Load region diffusion model.
steps = 41 if not steps else steps
guidance_weight = 8.5 if not guidance_weight else guidance_weight
# parse json to span attributes
base_text_prompt, style_text_prompts, footnote_text_prompts, footnote_target_tokens,\
color_text_prompts, color_names, color_rgbs, size_text_prompts_and_sizes, use_grad_guidance = parse_json(
json.loads(text_input))
# create control input for region diffusion
region_text_prompts, region_target_token_ids, base_tokens = get_region_diffusion_input(
model, base_text_prompt, style_text_prompts, footnote_text_prompts,
footnote_target_tokens, color_text_prompts, color_names)
# create control input for cross attention
text_format_dict = get_attention_control_input(
model, base_tokens, size_text_prompts_and_sizes)
# create control input for region guidance
text_format_dict, color_target_token_ids = get_gradient_guidance_input(
model, base_tokens, color_text_prompts, color_rgbs, text_format_dict)
seed_everything(seed)
# get token maps from plain text to image generation.
begin_time = time.time()
if model.attention_maps is None:
model.register_evaluation_hooks()
else:
model.reset_attention_maps()
plain_img = model.produce_attn_maps([base_text_prompt], [negative_text],
height=height, width=width, num_inference_steps=steps,
guidance_scale=guidance_weight)
print('time lapses to get attention maps: %.4f' % (time.time()-begin_time))
color_obj_masks, _ = get_token_maps(
model.attention_maps, run_dir, width//8, height//8, color_target_token_ids, seed)
model.masks, token_maps = get_token_maps(
model.attention_maps, run_dir, width//8, height//8, region_target_token_ids, seed, base_tokens)
color_obj_masks = [transforms.functional.resize(color_obj_mask, (height, width),
interpolation=transforms.InterpolationMode.BICUBIC,
antialias=True)
for color_obj_mask in color_obj_masks]
text_format_dict['color_obj_atten'] = color_obj_masks
model.remove_evaluation_hooks()
# generate image from rich text
begin_time = time.time()
seed_everything(seed)
rich_img = model.prompt_to_img(region_text_prompts, [negative_text],
height=height, width=width, num_inference_steps=steps,
guidance_scale=guidance_weight, use_grad_guidance=use_grad_guidance,
text_format_dict=text_format_dict)
print('time lapses to generate image from rich text: %.4f' %
(time.time()-begin_time))
cat_img = np.concatenate([plain_img[0], rich_img[0]], 1)
return [cat_img, token_maps]
with gr.Blocks() as demo:
gr.HTML("""<h1 style="font-weight: 900; margin-bottom: 7px;">Expressive Text-to-Image Generation with Rich Text</h1>
<p> Visit our <a href="https://rich-text-to-image.github.io/rich-text-to-json.html">rich-text-to-json interface</a> to generate rich-text JSON input.<p/>""")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label='Rich-text JSON Input',
max_lines=1,
placeholder='Example: \'{"ops":[{"insert":"a Gothic "},{"attributes":{"color":"#b26b00"},"insert":"church"},{"insert":" in a the sunset with a beautiful landscape in the background.\n"}]}\'')
negative_prompt = gr.Textbox(
label='Negative Prompt',
max_lines=1,
placeholder='')
seed = gr.Slider(label='Seed',
minimum=0,
maximum=100000,
step=1,
value=6)
with gr.Accordion('Other Parameters', open=False):
steps = gr.Slider(label='Number of Steps',
minimum=0,
maximum=500,
step=1,
value=41)
guidance_weight = gr.Slider(label='CFG weight',
minimum=0,
maximum=50,
step=0.1,
value=8.5)
width = gr.Dropdown(choices=[512, 768, 896],
value=512,
label='Width',
visible=True)
height = gr.Dropdown(choices=[512, 768, 896],
value=512,
label='height',
visible=True)
with gr.Row():
with gr.Column(scale=1, min_width=100):
generate_button = gr.Button("Generate")
with gr.Column():
result = gr.Image(label='Result')
token_map = gr.Image(label='TokenMap')
with gr.Row():
examples = [
[
'{"ops":[{"insert":"a Gothic "},{"attributes":{"color":"#b26b00"},"insert":"church"},{"insert":" in a the sunset with a beautiful landscape in the background.\n"}]}',
'',
512,
512,
6,
],
[
'{"ops": [{"insert": "A pizza with "}, {"attributes": {"size": "50px"}, "insert": "pineapples"}, {"insert": ", pepperonis, and mushrooms on the top, 4k, photorealistic\n"}]}',
'blurry, art, painting, rendering, drawing, sketch, ugly, duplicate, morbid, mutilated, mutated, deformed, disfigured low quality, worst quality',
768,
896,
6,
],
[
'{"ops":[{"insert":"a "},{"attributes":{"font":"mirza"},"insert":"beautiful garden"},{"insert":" with a "},{"attributes":{"font":"roboto"},"insert":"snow mountain in the background"},{"insert":"\n"}]}',
'',
512,
512,
3,
],
[
'{"ops":[{"insert":"A close-up 4k dslr photo of a "},{"attributes":{"link":"A cat wearing sunglasses and a bandana around its neck."},"insert":"cat"},{"insert":" riding a scooter. Palm trees in the background.\n"}]}',
'',
512,
512,
6,
],
]
gr.Examples(examples=examples,
inputs=[
text_input,
negative_prompt,
height,
width,
seed,
],
outputs=[
result,
token_map,
],
fn=generate,
# cache_examples=True,
examples_per_page=20)
generate_button.click(
fn=generate,
inputs=[
text_input,
negative_prompt,
height,
width,
seed,
steps,
guidance_weight,
],
outputs=[result, token_map],
)
demo.queue(concurrency_count=1)
demo.launch(share=False)
if __name__ == "__main__":
main()