import math import random import os import json import time import argparse import torch import numpy as np from torchvision import transforms from models.region_diffusion import RegionDiffusion from utils.attention_utils import get_token_maps from utils.richtext_utils import seed_everything, parse_json, get_region_diffusion_input,\ get_attention_control_input, get_gradient_guidance_input import gradio as gr from PIL import Image, ImageOps help_text = """ If you are encountering an error or not achieving your desired outcome, here are some potential reasons and recommendations to consider: 1. If you format only a portion of a word rather than the complete word, an error may occur. 2. The token map may not always accurately capture the region of the formatted tokens. If you're experiencing this problem, experiment with selecting more or fewer tokens to expand or reduce the area covered by the token maps. 3. If you use font color and get completely corrupted results, you may consider decrease the color weight lambda. 4. Consider using a different seed. """ canvas_html = """""" load_js = """ async () => { const scripts = ["https://cdn.quilljs.com/1.3.6/quill.min.js","file=rich-text-to-json.js"] scripts.forEach(src => { const script = document.createElement('script'); script.src = src; document.head.appendChild(script); }) } """ get_js_data = """ async (text_input, negative_prompt, height, width, seed, steps, guidance_weight, color_guidance_weight, rich_text_input) => { const richEl = document.getElementById("rich-text-root"); const data = richEl? richEl._data : {}; return [text_input, negative_prompt, height, width, seed, steps, guidance_weight, color_guidance_weight, JSON.stringify(data)]; } """ def main(): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = RegionDiffusion(device) def generate( text_input: str, negative_text: str, height: int, width: int, seed: int, steps: int, guidance_weight: float, color_guidance_weight: float, rich_text_input: str ): run_dir = 'results/' # Load region diffusion model. height = int(height) width = int(width) steps = 41 if not steps else steps guidance_weight = 8.5 if not guidance_weight else guidance_weight text_input = text_input if text_input != '' else rich_text_input print('text_input', text_input) # parse json to span attributes base_text_prompt, style_text_prompts, footnote_text_prompts, footnote_target_tokens,\ color_text_prompts, color_names, color_rgbs, size_text_prompts_and_sizes, use_grad_guidance = parse_json( json.loads(text_input), device) # create control input for region diffusion region_text_prompts, region_target_token_ids, base_tokens = get_region_diffusion_input( model, base_text_prompt, style_text_prompts, footnote_text_prompts, footnote_target_tokens, color_text_prompts, color_names) # create control input for cross attention text_format_dict = get_attention_control_input( model, base_tokens, size_text_prompts_and_sizes) # create control input for region guidance text_format_dict, color_target_token_ids = get_gradient_guidance_input( model, base_tokens, color_text_prompts, color_rgbs, text_format_dict, color_guidance_weight=color_guidance_weight) seed_everything(seed) # get token maps from plain text to image generation. begin_time = time.time() if model.attention_maps is None: model.register_evaluation_hooks() else: model.reset_attention_maps() plain_img = model.produce_attn_maps([base_text_prompt], [negative_text], height=height, width=width, num_inference_steps=steps, guidance_scale=guidance_weight) print('time lapses to get attention maps: %.4f' % (time.time()-begin_time)) color_obj_masks, _ = get_token_maps( model.attention_maps, run_dir, width//8, height//8, color_target_token_ids, seed) model.masks, token_maps = get_token_maps( model.attention_maps, run_dir, width//8, height//8, region_target_token_ids, seed, base_tokens) color_obj_masks = [transforms.functional.resize(color_obj_mask, (height, width), interpolation=transforms.InterpolationMode.BICUBIC, antialias=True) for color_obj_mask in color_obj_masks] text_format_dict['color_obj_atten'] = color_obj_masks model.remove_evaluation_hooks() # generate image from rich text begin_time = time.time() seed_everything(seed) rich_img = model.prompt_to_img(region_text_prompts, [negative_text], height=height, width=width, num_inference_steps=steps, guidance_scale=guidance_weight, use_grad_guidance=use_grad_guidance, text_format_dict=text_format_dict) print('time lapses to generate image from rich text: %.4f' % (time.time()-begin_time)) return [plain_img[0], rich_img[0], token_maps] with gr.Blocks() as demo: # demo.load(None, None, None, _js=load_js) gr.HTML("""

Expressive Text-to-Image Generation with Rich Text

Visit our rich-text-to-json interface to generate rich-text JSON input.

[Website] | [Code]

""") with gr.Row(): with gr.Column(): rich_text_el = gr.HTML(canvas_html,elem_id="canvas_html") rich_text_input = gr.Textbox(value="", visible=False) text_input = gr.Textbox( label='Rich-text JSON Input', max_lines=1, placeholder='Example: \'{"ops":[{"insert":"a Gothic "},{"attributes":{"color":"#b26b00"},"insert":"church"},{"insert":" in a the sunset with a beautiful landscape in the background.\n"}]}\'') negative_prompt = gr.Textbox( label='Negative Prompt', max_lines=1, placeholder='Example: poor quality, blurry, dark, low resolution, low quality, worst quality') seed = gr.Slider(label='Seed', minimum=0, maximum=100000, step=1, value=6) color_guidance_weight = gr.Slider(label='Color weight lambda', minimum=0, maximum=2, step=0.1, value=0.5) with gr.Accordion('Other Parameters', open=False): steps = gr.Slider(label='Number of Steps', minimum=0, maximum=500, step=1, value=41) guidance_weight = gr.Slider(label='CFG weight', minimum=0, maximum=50, step=0.1, value=8.5) width = gr.Dropdown(choices=[512, 768, 896], value=512, label='Width', visible=True) height = gr.Dropdown(choices=[512, 768, 896], value=512, label='height', visible=True) with gr.Row(): with gr.Column(scale=1, min_width=100): generate_button = gr.Button("Generate") with gr.Column(): with gr.Row(): plaintext_result = gr.Image(label='Plain-text') richtext_result = gr.Image(label='Rich-text') token_map = gr.Image(label='Token Maps') with gr.Row(): gr.Markdown(help_text) with gr.Row(): style_examples = [ [ '{"ops":[{"insert":"a "},{"attributes":{"font":"slabo"},"insert":"night sky filled with stars"},{"insert":" above a "},{"attributes":{"font":"roboto"},"insert":"turbulent sea with giant waves"}]}', '', 512, 512, 6, 1, None ], [ '{"ops":[{"insert":"a "},{"attributes":{"font":"mirza"},"insert":"beautiful garden"},{"insert":" with a "},{"attributes":{"font":"roboto"},"insert":"snow mountain in the background"},{"insert":""}]}', '', 512, 512, 3, 1, None ], [ '{"ops":[{"attributes":{"link":"the awe-inspiring sky and ocean in the style of J.M.W. Turner"},"insert":"the awe-inspiring sky and sea"},{"insert":" by "},{"attributes":{"font":"mirza"},"insert":"a coast with flowers and grasses in spring"}]}', '', 512, 512, 9, 1, None ], ] gr.Examples(examples=style_examples, label='Font style examples', inputs=[ text_input, negative_prompt, height, width, seed, color_guidance_weight, rich_text_input, ], outputs=[ plaintext_result, richtext_result, token_map, ], fn=generate, # cache_examples=True, examples_per_page=20) with gr.Row(): color_examples = [ [ '{"ops":[{"insert":"a Gothic "},{"attributes":{"color":"#b26b00"},"insert":"church"},{"insert":" in a the sunset with a beautiful landscape in the background."}]}', '', 512, 512, 6, 1, None ], [ '{"ops":[{"insert":"A mesmerizing sight that captures the beauty of a "},{"attributes":{"color":"#4775fc"},"insert":"rose"},{"insert":" blooming, close up"}]}', '', 512, 512, 8, 1, None ], [ '{"ops":[{"insert":"A "},{"attributes":{"color":"#FFD700"},"insert":"marble statue of a wolf\'s head and shoulder"},{"insert":", surrounded by colorful flowers michelangelo, detailed, intricate, full of color, led lighting, trending on artstation, 4 k, hyperrealistic, 3 5 mm, focused, extreme details, unreal engine 5, masterpiece "}]}', '', 512, 512, 5, 0.6, None ], ] gr.Examples(examples=color_examples, label='Font color examples', inputs=[ text_input, negative_prompt, height, width, seed, color_guidance_weight, rich_text_input, ], outputs=[ plaintext_result, richtext_result, token_map, ], fn=generate, # cache_examples=True, examples_per_page=20) with gr.Row(): size_examples = [ [ '{"ops": [{"insert": "A pizza with "}, {"attributes": {"size": "60px"}, "insert": "pineapple"}, {"insert": ", pepperoni, and mushroom on the top, 4k, photorealistic"}]}', 'blurry, art, painting, rendering, drawing, sketch, ugly, duplicate, morbid, mutilated, mutated, deformed, disfigured low quality, worst quality', 512, 512, 13, 1, None ], [ '{"ops": [{"insert": "A pizza with pineapple, "}, {"attributes": {"size": "20px"}, "insert": "pepperoni"}, {"insert": ", and mushroom on the top, 4k, photorealistic"}]}', 'blurry, art, painting, rendering, drawing, sketch, ugly, duplicate, morbid, mutilated, mutated, deformed, disfigured low quality, worst quality', 512, 512, 13, 1, None ], [ '{"ops": [{"insert": "A pizza with pineapple, pepperoni, and"}, {"attributes": {"size": "70px"}, "insert": "mushroom"}, {"insert": " on the top, 4k, photorealistic"}]}', 'blurry, art, painting, rendering, drawing, sketch, ugly, duplicate, morbid, mutilated, mutated, deformed, disfigured low quality, worst quality', 512, 512, 13, 1, None ], ] gr.Examples(examples=size_examples, label='Font size examples', inputs=[ text_input, negative_prompt, height, width, seed, color_guidance_weight, rich_text_input, ], outputs=[ plaintext_result, richtext_result, token_map, ], fn=generate, # cache_examples=True, examples_per_page=20) with gr.Row(): footnote_examples = [ [ '{"ops":[{"insert":"A close-up 4k dslr photo of a "},{"attributes":{"link":"A cat wearing sunglasses and a bandana around its neck."},"insert":"cat"},{"insert":" riding a scooter. Palm trees in the background."}]}', '', 512, 512, 6, 1, None ], ] gr.Examples(examples=footnote_examples, label='Footnote examples', inputs=[ text_input, negative_prompt, height, width, seed, color_guidance_weight, rich_text_input, ], outputs=[ plaintext_result, richtext_result, token_map, ], fn=generate, # cache_examples=True, examples_per_page=20) generate_button.click( fn=generate, inputs=[ text_input, negative_prompt, height, width, seed, steps, guidance_weight, color_guidance_weight, rich_text_input ], outputs=[plaintext_result, richtext_result, token_map], _js=get_js_data ) demo.queue(concurrency_count=1) demo.launch(share=False) if __name__ == "__main__": main()