File size: 1,030 Bytes
f63e6d3
ab202ed
 
f63e6d3
ab202ed
f63e6d3
ab202ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import gradio as gr
from gradio.outputs import Label
import cv2

from ultralytics import YOLO

model = YOLO('best.pt')
path  = [['pothole_screenshot.png']]

def show_preds(image_path):
    image = cv2.imread(image_path)
    outputs = model.predict(source=image_path, return_outputs=True)
    for image_id, result in enumerate(outputs):
        print(result['det'])
        for i, det in enumerate(result['det']):
            print(det)
            cv2.rectangle(
                image,
                (int(det[0]), int(det[1])),
                (int(det[2]), int(det[3])),
                color=(0, 0, 255),
                thickness=2,
                lineType=cv2.LINE_AA
            )
    return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

gr_interface = gr.Interface(
    fn=show_preds,
    inputs=gr.inputs.Image(type="filepath", label="Input Image"),
    outputs=gr.outputs.Image(type="numpy", label="Output Image"),
    title="Pothole detector",
    examples=path,
)

gr_interface.launch(inline=False, share=False, debug=True)