Spaces:
Running
Running
File size: 1,549 Bytes
f63e6d3 ab202ed b137505 f63e6d3 ab202ed f63e6d3 b137505 ab202ed b137505 ab202ed b137505 ab202ed 0c6b7d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import gradio as gr
from gradio.outputs import Label
import cv2
import requests
import os
from ultralytics import YOLO
file_urls = [
'https://www.dropbox.com/s/b5g97xo901zb3ds/pothole_example.jpg?dl=1',
'https://www.dropbox.com/s/86uxlxxlm1iaexa/pothole_screenshot.png?dl=1'
]
def download_file(url, save_name):
url = url
if not os.path.exists(save_name):
file = requests.get(url)
open(save_name, 'wb').write(file.content)
for i, url in enumerate(file_urls):
download_file(
file_urls[i],
f"image_{i}.jpg"
)
model = YOLO('best.pt')
path = [['image_0.jpg'], ['image_1.jpg']]
def show_preds(image_path):
image = cv2.imread(image_path)
outputs = model.predict(source=image_path, return_outputs=True)
for image_id, result in enumerate(outputs):
print(result['det'])
for i, det in enumerate(result['det']):
print(det)
cv2.rectangle(
image,
(int(det[0]), int(det[1])),
(int(det[2]), int(det[3])),
color=(0, 0, 255),
thickness=2,
lineType=cv2.LINE_AA
)
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
gr_interface = gr.Interface(
fn=show_preds,
inputs=gr.inputs.Image(type="filepath", label="Input Image"),
outputs=gr.outputs.Image(type="numpy", label="Output Image"),
title="Pothole detector",
examples=path,
# cache_examples=True,
# live=True,
)
gr_interface.launch(debug=True, enable_queue=True) |