Spaces:
Running
Running
import gradio as gr | |
from gradio.outputs import Label | |
import cv2 | |
import requests | |
import os | |
from ultralytics import YOLO | |
file_urls = [ | |
'https://www.dropbox.com/s/b5g97xo901zb3ds/pothole_example.jpg?dl=1', | |
'https://www.dropbox.com/s/86uxlxxlm1iaexa/pothole_screenshot.png?dl=1', | |
'https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1' | |
] | |
def download_file(url, save_name): | |
url = url | |
if not os.path.exists(save_name): | |
file = requests.get(url) | |
open(save_name, 'wb').write(file.content) | |
for i, url in enumerate(file_urls): | |
if 'mp4' in file_urls[i]: | |
download_file( | |
file_urls[i], | |
f"video.mp4" | |
) | |
else: | |
download_file( | |
file_urls[i], | |
f"image_{i}.jpg" | |
) | |
model = YOLO('best.pt') | |
path = [['image_0.jpg'], ['image_1.jpg']] | |
video_path = [['video.mp4']] | |
def show_preds_image(image_path): | |
image = cv2.imread(image_path) | |
outputs = model.predict(source=image_path) | |
results = outputs[0].cpu().numpy() | |
for i, det in enumerate(results.boxes.xyxy): | |
# print(det.xyxy) | |
cv2.rectangle( | |
image, | |
(int(det[0]), int(det[1])), | |
(int(det[2]), int(det[3])), | |
color=(0, 0, 255), | |
thickness=2, | |
lineType=cv2.LINE_AA | |
) | |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
inputs_image = [ | |
gr.components.Image(type="filepath", label="Input Image"), | |
# gr.components.Video(type="filepath", label="Input Video", optional=True), | |
] | |
outputs_image = [ | |
gr.components.Image(type="numpy", label="Output Image"), | |
] | |
interface_image = gr.Interface( | |
fn=show_preds_image, | |
inputs=inputs_image, | |
outputs=outputs_image, | |
title="Pothole detector", | |
examples=path, | |
cache_examples=False, | |
# live=True, | |
) | |
def show_preds_video(video_path): | |
cap = cv2.VideoCapture(video_path) | |
while(cap.isOpened()): | |
ret, frame = cap.read() | |
if ret: | |
frame_copy = frame.copy() | |
outputs = model.predict(source=frame) | |
results = outputs[0].cpu().numpy() | |
for i, det in enumerate(results.boxes.xyxy): | |
# print(det.xyxy) | |
cv2.rectangle( | |
frame_copy, | |
(int(det[0]), int(det[1])), | |
(int(det[2]), int(det[3])), | |
color=(0, 0, 255), | |
thickness=2, | |
lineType=cv2.LINE_AA | |
) | |
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) | |
inputs_video = [ | |
gr.components.Video(type="filepath", label="Input Video"), | |
] | |
outputs_video = [ | |
gr.components.Image(type="numpy", label="Output Image"), | |
] | |
interface_video = gr.Interface( | |
fn=show_preds_video, | |
inputs=inputs_video, | |
outputs=outputs_video, | |
title="Pothole detector", | |
examples=video_path, | |
cache_examples=False, | |
# live=True, | |
) | |
# interface_image.launch(debug=True, enable_queue=True) | |
gr.TabbedInterface( | |
[interface_image, interface_video], | |
tab_names=['Image inference', 'Video inference'] | |
).queue().launch() |