sovitrath commited on
Commit
9888af9
1 Parent(s): e0fa73b

Cleaning up App.py

Browse files
Files changed (1) hide show
  1. app.py +1 -9
app.py CHANGED
@@ -1,5 +1,4 @@
1
  import gradio as gr
2
- from gradio.outputs import Label
3
  import cv2
4
  import requests
5
  import os
@@ -39,7 +38,6 @@ def show_preds_image(image_path):
39
  outputs = model.predict(source=image_path)
40
  results = outputs[0].cpu().numpy()
41
  for i, det in enumerate(results.boxes.xyxy):
42
- # print(det.xyxy)
43
  cv2.rectangle(
44
  image,
45
  (int(det[0]), int(det[1])),
@@ -52,8 +50,6 @@ def show_preds_image(image_path):
52
 
53
  inputs_image = [
54
  gr.components.Image(type="filepath", label="Input Image"),
55
- # gr.components.Video(type="filepath", label="Input Video", optional=True),
56
-
57
  ]
58
  outputs_image = [
59
  gr.components.Image(type="numpy", label="Output Image"),
@@ -65,10 +61,8 @@ interface_image = gr.Interface(
65
  title="Pothole detector",
66
  examples=path,
67
  cache_examples=False,
68
- # live=True,
69
  )
70
 
71
-
72
  def show_preds_video(video_path):
73
  cap = cv2.VideoCapture(video_path)
74
  while(cap.isOpened()):
@@ -78,7 +72,6 @@ def show_preds_video(video_path):
78
  outputs = model.predict(source=frame)
79
  results = outputs[0].cpu().numpy()
80
  for i, det in enumerate(results.boxes.xyxy):
81
- # print(det.xyxy)
82
  cv2.rectangle(
83
  frame_copy,
84
  (int(det[0]), int(det[1])),
@@ -103,9 +96,8 @@ interface_video = gr.Interface(
103
  title="Pothole detector",
104
  examples=video_path,
105
  cache_examples=False,
106
- # live=True,
107
  )
108
- # interface_image.launch(debug=True, enable_queue=True)
109
  gr.TabbedInterface(
110
  [interface_image, interface_video],
111
  tab_names=['Image inference', 'Video inference']
 
1
  import gradio as gr
 
2
  import cv2
3
  import requests
4
  import os
 
38
  outputs = model.predict(source=image_path)
39
  results = outputs[0].cpu().numpy()
40
  for i, det in enumerate(results.boxes.xyxy):
 
41
  cv2.rectangle(
42
  image,
43
  (int(det[0]), int(det[1])),
 
50
 
51
  inputs_image = [
52
  gr.components.Image(type="filepath", label="Input Image"),
 
 
53
  ]
54
  outputs_image = [
55
  gr.components.Image(type="numpy", label="Output Image"),
 
61
  title="Pothole detector",
62
  examples=path,
63
  cache_examples=False,
 
64
  )
65
 
 
66
  def show_preds_video(video_path):
67
  cap = cv2.VideoCapture(video_path)
68
  while(cap.isOpened()):
 
72
  outputs = model.predict(source=frame)
73
  results = outputs[0].cpu().numpy()
74
  for i, det in enumerate(results.boxes.xyxy):
 
75
  cv2.rectangle(
76
  frame_copy,
77
  (int(det[0]), int(det[1])),
 
96
  title="Pothole detector",
97
  examples=video_path,
98
  cache_examples=False,
 
99
  )
100
+
101
  gr.TabbedInterface(
102
  [interface_image, interface_video],
103
  tab_names=['Image inference', 'Video inference']