import gradio as gr from gradio.outputs import Label import cv2 from ultralytics import YOLO model = YOLO('best.pt') path = [['pothole_example.jpg'], ['pothole_screenshot.png']] def show_preds(image_path): image = cv2.imread(image_path) outputs = model.predict(source=image_path, return_outputs=True) for image_id, result in enumerate(outputs): print(result['det']) for i, det in enumerate(result['det']): print(det) cv2.rectangle( image, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA ) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) gr_interface = gr.Interface( fn=show_preds, inputs=gr.inputs.Image(type="filepath", label="Input Image"), outputs=gr.outputs.Image(type="numpy", label="Output Image"), title="Pothole detector", examples=path, cache_examples=True, live=True, ) gr_interface.launch(debug=True, enable_queue=True)