import gradio as gr from gradio.outputs import Label import cv2 import requests import os from ultralytics import YOLO file_urls = [ 'https://www.dropbox.com/s/b5g97xo901zb3ds/pothole_example.jpg?dl=1', 'https://www.dropbox.com/s/86uxlxxlm1iaexa/pothole_screenshot.png?dl=1' ] def download_file(url, save_name): url = url if not os.path.exists(save_name): file = requests.get(url) open(save_name, 'wb').write(file.content) for i, url in enumerate(file_urls): download_file( file_urls[i], f"image_{i}.jpg" ) model = YOLO('best.pt') path = [['image_0.jpg'], ['image_1.jpg']] def show_preds(image_path): image = cv2.imread(image_path) outputs = model.predict(source=image_path, return_outputs=True) for image_id, result in enumerate(outputs): print(result['det']) for i, det in enumerate(result['det']): print(det) cv2.rectangle( image, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA ) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) gr_interface = gr.Interface( fn=show_preds, inputs=gr.inputs.Image(type="filepath", label="Input Image"), outputs=gr.outputs.Image(type="numpy", label="Output Image"), title="Pothole detector", examples=path, # cache_examples=True, # live=True, ) gr_interface.launch(debug=True, enable_queue=True)