|
|
|
import base64 |
|
import glob |
|
import json |
|
import math |
|
import openai |
|
import os |
|
import pytz |
|
import re |
|
import requests |
|
import streamlit as st |
|
import textract |
|
import time |
|
import zipfile |
|
import huggingface_hub |
|
import dotenv |
|
from audio_recorder_streamlit import audio_recorder |
|
from bs4 import BeautifulSoup |
|
from collections import deque |
|
from datetime import datetime |
|
from dotenv import load_dotenv |
|
from huggingface_hub import InferenceClient |
|
from io import BytesIO |
|
from langchain.chat_models import ChatOpenAI |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain.embeddings import OpenAIEmbeddings |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain.text_splitter import CharacterTextSplitter |
|
from langchain.vectorstores import FAISS |
|
from openai import ChatCompletion |
|
from PyPDF2 import PdfReader |
|
from templates import bot_template, css, user_template |
|
from xml.etree import ElementTree as ET |
|
import streamlit.components.v1 as components |
|
|
|
|
|
st.set_page_config(page_title="🐪Llama🦙Whisperer", layout="wide") |
|
st.markdown('(Inference Endpoints)[https://ui.endpoints.huggingface.co/awacke1/endpoints]') |
|
|
|
def add_Med_Licensing_Exam_Dataset(): |
|
import streamlit as st |
|
from datasets import load_dataset |
|
dataset = load_dataset("augtoma/usmle_step_1")['test'] |
|
st.title("USMLE Step 1 Dataset Viewer") |
|
if len(dataset) == 0: |
|
st.write("😢 The dataset is empty.") |
|
else: |
|
st.write(""" |
|
🔍 Use the search box to filter questions or use the grid to scroll through the dataset. |
|
""") |
|
|
|
|
|
search_term = st.text_input("Search for a specific question:", "") |
|
|
|
|
|
records_per_page = 100 |
|
num_records = len(dataset) |
|
num_pages = max(int(num_records / records_per_page), 1) |
|
|
|
|
|
if num_pages > 1: |
|
page_number = st.select_slider("Select page:", options=list(range(1, num_pages + 1))) |
|
else: |
|
page_number = 1 |
|
|
|
|
|
start_idx = (page_number - 1) * records_per_page |
|
end_idx = start_idx + records_per_page |
|
|
|
|
|
filtered_data = [] |
|
for record in dataset[start_idx:end_idx]: |
|
if isinstance(record, dict) and 'text' in record and 'id' in record: |
|
if search_term: |
|
if search_term.lower() in record['text'].lower(): |
|
st.markdown(record) |
|
filtered_data.append(record) |
|
else: |
|
filtered_data.append(record) |
|
|
|
|
|
for record in filtered_data: |
|
st.write(f"## Question ID: {record['id']}") |
|
st.write(f"### Question:") |
|
st.write(f"{record['text']}") |
|
st.write(f"### Answer:") |
|
st.write(f"{record['answer']}") |
|
st.write("---") |
|
|
|
st.write(f"😊 Total Records: {num_records} | 📄 Displaying {start_idx+1} to {min(end_idx, num_records)}") |
|
|
|
|
|
|
|
|
|
API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' |
|
|
|
|
|
API_KEY = os.getenv('API_KEY') |
|
MODEL1="meta-llama/Llama-2-7b-chat-hf" |
|
MODEL1URL="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf" |
|
HF_KEY = os.getenv('HF_KEY') |
|
headers = { |
|
"Authorization": f"Bearer {HF_KEY}", |
|
"Content-Type": "application/json" |
|
} |
|
key = os.getenv('OPENAI_API_KEY') |
|
prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface." |
|
should_save = st.sidebar.checkbox("💾 Save", value=True, help="Save your session data.") |
|
|
|
|
|
def add_witty_humor_buttons(): |
|
with st.expander("Wit and Humor 🤣", expanded=True): |
|
|
|
st.markdown("🔬 **Fun Fact**: Dromedaries, part of the camel family, have a single hump and are adapted to arid environments. Their 'superpowers' include the ability to survive without water for up to 7 days, thanks to their specialized blood cells and water storage in their hump.") |
|
|
|
|
|
descriptions = { |
|
"Generate Limericks 😂": "Write ten random adult limericks based on quotes that are tweet length and make you laugh 🎭", |
|
"Wise Quotes 🧙": "Generate ten wise quotes that are tweet length 🦉", |
|
"Funny Rhymes 🎤": "Create ten funny rhymes that are tweet length 🎶", |
|
"Medical Jokes 💉": "Create ten medical jokes that are tweet length 🏥", |
|
"Minnesota Humor ❄️": "Create ten jokes about Minnesota that are tweet length 🌨️", |
|
"Top Funny Stories 📖": "Create ten funny stories that are tweet length 📚", |
|
"More Funny Rhymes 🎙️": "Create ten more funny rhymes that are tweet length 🎵" |
|
} |
|
|
|
|
|
col1, col2, col3 = st.columns([1, 1, 1], gap="small") |
|
|
|
|
|
if col1.button("Generate Limericks 😂"): |
|
StreamLLMChatResponse(descriptions["Generate Limericks 😂"]) |
|
|
|
if col2.button("Wise Quotes 🧙"): |
|
StreamLLMChatResponse(descriptions["Wise Quotes 🧙"]) |
|
|
|
if col3.button("Funny Rhymes 🎤"): |
|
StreamLLMChatResponse(descriptions["Funny Rhymes 🎤"]) |
|
|
|
col4, col5, col6 = st.columns([1, 1, 1], gap="small") |
|
|
|
if col4.button("Medical Jokes 💉"): |
|
StreamLLMChatResponse(descriptions["Medical Jokes 💉"]) |
|
|
|
if col5.button("Minnesota Humor ❄️"): |
|
StreamLLMChatResponse(descriptions["Minnesota Humor ❄️"]) |
|
|
|
if col6.button("Top Funny Stories 📖"): |
|
StreamLLMChatResponse(descriptions["Top Funny Stories 📖"]) |
|
|
|
col7 = st.columns(1, gap="small") |
|
|
|
if col7[0].button("More Funny Rhymes 🎙️"): |
|
StreamLLMChatResponse(descriptions["More Funny Rhymes 🎙️"]) |
|
|
|
def SpeechSynthesis(result): |
|
documentHTML5=''' |
|
<!DOCTYPE html> |
|
<html> |
|
<head> |
|
<title>Read It Aloud</title> |
|
<script type="text/javascript"> |
|
function readAloud() { |
|
const text = document.getElementById("textArea").value; |
|
const speech = new SpeechSynthesisUtterance(text); |
|
window.speechSynthesis.speak(speech); |
|
} |
|
</script> |
|
</head> |
|
<body> |
|
<h1>🔊 Read It Aloud</h1> |
|
<textarea id="textArea" rows="10" cols="80"> |
|
''' |
|
documentHTML5 = documentHTML5 + result |
|
documentHTML5 = documentHTML5 + ''' |
|
</textarea> |
|
<br> |
|
<button onclick="readAloud()">🔊 Read Aloud</button> |
|
</body> |
|
</html> |
|
''' |
|
|
|
components.html(documentHTML5, width=1280, height=1024) |
|
|
|
|
|
|
|
|
|
|
|
def StreamLLMChatResponse(prompt): |
|
try: |
|
endpoint_url = API_URL |
|
hf_token = API_KEY |
|
client = InferenceClient(endpoint_url, token=hf_token) |
|
gen_kwargs = dict( |
|
max_new_tokens=512, |
|
top_k=30, |
|
top_p=0.9, |
|
temperature=0.2, |
|
repetition_penalty=1.02, |
|
stop_sequences=["\nUser:", "<|endoftext|>", "</s>"], |
|
) |
|
stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs) |
|
report=[] |
|
res_box = st.empty() |
|
collected_chunks=[] |
|
collected_messages=[] |
|
allresults='' |
|
for r in stream: |
|
if r.token.special: |
|
continue |
|
if r.token.text in gen_kwargs["stop_sequences"]: |
|
break |
|
collected_chunks.append(r.token.text) |
|
chunk_message = r.token.text |
|
collected_messages.append(chunk_message) |
|
try: |
|
report.append(r.token.text) |
|
if len(r.token.text) > 0: |
|
result="".join(report).strip() |
|
res_box.markdown(f'*{result}*') |
|
|
|
except: |
|
st.write('Stream llm issue') |
|
SpeechSynthesis(result) |
|
return result |
|
except: |
|
st.write('Llama model is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).') |
|
|
|
|
|
def query(payload): |
|
response = requests.post(API_URL, headers=headers, json=payload) |
|
st.markdown(response.json()) |
|
return response.json() |
|
def get_output(prompt): |
|
return query({"inputs": prompt}) |
|
|
|
|
|
def generate_filename(prompt, file_type): |
|
central = pytz.timezone('US/Central') |
|
safe_date_time = datetime.now(central).strftime("%m%d_%H%M") |
|
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_") |
|
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:45] |
|
return f"{safe_date_time}_{safe_prompt}.{file_type}" |
|
|
|
|
|
def transcribe_audio(openai_key, file_path, model): |
|
openai.api_key = openai_key |
|
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions" |
|
headers = { |
|
"Authorization": f"Bearer {openai_key}", |
|
} |
|
with open(file_path, 'rb') as f: |
|
data = {'file': f} |
|
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model}) |
|
if response.status_code == 200: |
|
st.write(response.json()) |
|
chatResponse = chat_with_model(response.json().get('text'), '') |
|
transcript = response.json().get('text') |
|
filename = generate_filename(transcript, 'txt') |
|
response = chatResponse |
|
user_prompt = transcript |
|
create_file(filename, user_prompt, response, should_save) |
|
return transcript |
|
else: |
|
st.write(response.json()) |
|
st.error("Error in API call.") |
|
return None |
|
|
|
|
|
def save_and_play_audio(audio_recorder): |
|
audio_bytes = audio_recorder(key='audio_recorder') |
|
if audio_bytes: |
|
filename = generate_filename("Recording", "wav") |
|
with open(filename, 'wb') as f: |
|
f.write(audio_bytes) |
|
st.audio(audio_bytes, format="audio/wav") |
|
return filename |
|
return None |
|
|
|
|
|
def create_file(filename, prompt, response, should_save=True): |
|
if not should_save: |
|
return |
|
base_filename, ext = os.path.splitext(filename) |
|
if ext in ['.txt', '.htm', '.md']: |
|
with open(f"{base_filename}.md", 'w') as file: |
|
try: |
|
content = prompt.strip() + '\r\n' + response |
|
file.write(content) |
|
except: |
|
st.write('.') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def truncate_document(document, length): |
|
return document[:length] |
|
def divide_document(document, max_length): |
|
return [document[i:i+max_length] for i in range(0, len(document), max_length)] |
|
|
|
|
|
@st.cache_resource |
|
def get_table_download_link(file_path): |
|
with open(file_path, 'r') as file: |
|
data = file.read() |
|
|
|
b64 = base64.b64encode(data.encode()).decode() |
|
file_name = os.path.basename(file_path) |
|
ext = os.path.splitext(file_name)[1] |
|
if ext == '.txt': |
|
mime_type = 'text/plain' |
|
elif ext == '.py': |
|
mime_type = 'text/plain' |
|
elif ext == '.xlsx': |
|
mime_type = 'text/plain' |
|
elif ext == '.csv': |
|
mime_type = 'text/plain' |
|
elif ext == '.htm': |
|
mime_type = 'text/html' |
|
elif ext == '.md': |
|
mime_type = 'text/markdown' |
|
else: |
|
mime_type = 'application/octet-stream' |
|
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>' |
|
return href |
|
|
|
|
|
def CompressXML(xml_text): |
|
root = ET.fromstring(xml_text) |
|
for elem in list(root.iter()): |
|
if isinstance(elem.tag, str) and 'Comment' in elem.tag: |
|
elem.parent.remove(elem) |
|
return ET.tostring(root, encoding='unicode', method="xml") |
|
|
|
|
|
@st.cache_resource |
|
def read_file_content(file,max_length): |
|
if file.type == "application/json": |
|
content = json.load(file) |
|
return str(content) |
|
elif file.type == "text/html" or file.type == "text/htm": |
|
content = BeautifulSoup(file, "html.parser") |
|
return content.text |
|
elif file.type == "application/xml" or file.type == "text/xml": |
|
tree = ET.parse(file) |
|
root = tree.getroot() |
|
xml = CompressXML(ET.tostring(root, encoding='unicode')) |
|
return xml |
|
elif file.type == "text/markdown" or file.type == "text/md": |
|
md = mistune.create_markdown() |
|
content = md(file.read().decode()) |
|
return content |
|
elif file.type == "text/plain": |
|
return file.getvalue().decode() |
|
else: |
|
return "" |
|
|
|
|
|
@st.cache_resource |
|
def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'): |
|
model = model_choice |
|
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}] |
|
conversation.append({'role': 'user', 'content': prompt}) |
|
if len(document_section)>0: |
|
conversation.append({'role': 'assistant', 'content': document_section}) |
|
start_time = time.time() |
|
report = [] |
|
res_box = st.empty() |
|
collected_chunks = [] |
|
collected_messages = [] |
|
for chunk in openai.ChatCompletion.create(model='gpt-3.5-turbo', messages=conversation, temperature=0.5, stream=True): |
|
collected_chunks.append(chunk) |
|
chunk_message = chunk['choices'][0]['delta'] |
|
collected_messages.append(chunk_message) |
|
content=chunk["choices"][0].get("delta",{}).get("content") |
|
try: |
|
report.append(content) |
|
if len(content) > 0: |
|
result = "".join(report).strip() |
|
res_box.markdown(f'*{result}*') |
|
except: |
|
st.write(' ') |
|
full_reply_content = ''.join([m.get('content', '') for m in collected_messages]) |
|
st.write("Elapsed time:") |
|
st.write(time.time() - start_time) |
|
return full_reply_content |
|
|
|
|
|
@st.cache_resource |
|
def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'): |
|
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}] |
|
conversation.append({'role': 'user', 'content': prompt}) |
|
if len(file_content)>0: |
|
conversation.append({'role': 'assistant', 'content': file_content}) |
|
response = openai.ChatCompletion.create(model=model_choice, messages=conversation) |
|
return response['choices'][0]['message']['content'] |
|
|
|
def extract_mime_type(file): |
|
if isinstance(file, str): |
|
pattern = r"type='(.*?)'" |
|
match = re.search(pattern, file) |
|
if match: |
|
return match.group(1) |
|
else: |
|
raise ValueError(f"Unable to extract MIME type from {file}") |
|
elif isinstance(file, streamlit.UploadedFile): |
|
return file.type |
|
else: |
|
raise TypeError("Input should be a string or a streamlit.UploadedFile object") |
|
|
|
def extract_file_extension(file): |
|
|
|
file_name = file.name |
|
pattern = r".*?\.(.*?)$" |
|
match = re.search(pattern, file_name) |
|
if match: |
|
return match.group(1) |
|
else: |
|
raise ValueError(f"Unable to extract file extension from {file_name}") |
|
|
|
|
|
@st.cache_resource |
|
def pdf2txt(docs): |
|
text = "" |
|
for file in docs: |
|
file_extension = extract_file_extension(file) |
|
st.write(f"File type extension: {file_extension}") |
|
if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']: |
|
text += file.getvalue().decode('utf-8') |
|
elif file_extension.lower() == 'pdf': |
|
from PyPDF2 import PdfReader |
|
pdf = PdfReader(BytesIO(file.getvalue())) |
|
for page in range(len(pdf.pages)): |
|
text += pdf.pages[page].extract_text() |
|
return text |
|
|
|
def txt2chunks(text): |
|
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len) |
|
return text_splitter.split_text(text) |
|
|
|
|
|
@st.cache_resource |
|
def vector_store(text_chunks): |
|
embeddings = OpenAIEmbeddings(openai_api_key=key) |
|
return FAISS.from_texts(texts=text_chunks, embedding=embeddings) |
|
|
|
|
|
@st.cache_resource |
|
def get_chain(vectorstore): |
|
llm = ChatOpenAI() |
|
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) |
|
return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory) |
|
|
|
def process_user_input(user_question): |
|
response = st.session_state.conversation({'question': user_question}) |
|
st.session_state.chat_history = response['chat_history'] |
|
for i, message in enumerate(st.session_state.chat_history): |
|
template = user_template if i % 2 == 0 else bot_template |
|
st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True) |
|
filename = generate_filename(user_question, 'txt') |
|
response = message.content |
|
user_prompt = user_question |
|
create_file(filename, user_prompt, response, should_save) |
|
|
|
def divide_prompt(prompt, max_length): |
|
words = prompt.split() |
|
chunks = [] |
|
current_chunk = [] |
|
current_length = 0 |
|
for word in words: |
|
if len(word) + current_length <= max_length: |
|
current_length += len(word) + 1 |
|
current_chunk.append(word) |
|
else: |
|
chunks.append(' '.join(current_chunk)) |
|
current_chunk = [word] |
|
current_length = len(word) |
|
chunks.append(' '.join(current_chunk)) |
|
return chunks |
|
|
|
|
|
|
|
|
|
@st.cache_resource |
|
def create_zip_of_files(files): |
|
zip_name = "all_files.zip" |
|
with zipfile.ZipFile(zip_name, 'w') as zipf: |
|
for file in files: |
|
zipf.write(file) |
|
return zip_name |
|
|
|
@st.cache_resource |
|
def get_zip_download_link(zip_file): |
|
with open(zip_file, 'rb') as f: |
|
data = f.read() |
|
b64 = base64.b64encode(data).decode() |
|
href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>' |
|
return href |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
API_URL_IE = "https://hifdvffh2em0wn50.us-east-1.aws.endpoints.huggingface.cloud" |
|
|
|
MODEL2 = "openai/whisper-small.en" |
|
MODEL2_URL = "https://huggingface.co/openai/whisper-small.en" |
|
|
|
|
|
|
|
|
|
HF_KEY = os.getenv('HF_KEY') |
|
headers = { |
|
"Authorization": f"Bearer {HF_KEY}", |
|
"Content-Type": "audio/wav" |
|
} |
|
|
|
|
|
def query(filename): |
|
with open(filename, "rb") as f: |
|
data = f.read() |
|
response = requests.post(API_URL_IE, headers=headers, data=data) |
|
return response.json() |
|
|
|
def generate_filename(prompt, file_type): |
|
central = pytz.timezone('US/Central') |
|
safe_date_time = datetime.now(central).strftime("%m%d_%H%M") |
|
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_") |
|
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90] |
|
return f"{safe_date_time}_{safe_prompt}.{file_type}" |
|
|
|
|
|
def save_and_play_audio(audio_recorder): |
|
audio_bytes = audio_recorder() |
|
if audio_bytes: |
|
filename = generate_filename("Recording", "wav") |
|
with open(filename, 'wb') as f: |
|
f.write(audio_bytes) |
|
st.audio(audio_bytes, format="audio/wav") |
|
return filename |
|
|
|
|
|
def transcribe_audio(filename): |
|
output = query(filename) |
|
return output |
|
|
|
|
|
def whisper_main(): |
|
st.title("1🐪Llama🦙Whisperer") |
|
st.write("Record your speech and get the text.") |
|
|
|
|
|
filename = save_and_play_audio(audio_recorder) |
|
if filename is not None: |
|
transcription = transcribe_audio(filename) |
|
|
|
|
|
transcript = transcription['text'] |
|
|
|
|
|
|
|
st.write(transcript) |
|
response = StreamLLMChatResponse(transcript) |
|
|
|
filename = generate_filename(transcript, ".txt") |
|
create_file(filename, transcript, response, should_save) |
|
|
|
|
|
import streamlit as st |
|
|
|
|
|
def StreamMedChatResponse(topic): |
|
st.write(f"Showing resources or questions related to: {topic}") |
|
|
|
def add_multi_system_agent_topics(): |
|
with st.expander("Multi-System Agent AI Topics 🤖", expanded=True): |
|
st.markdown("🤖 **Explore Multi-System Agent AI Topics**: This section provides a variety of topics related to multi-system agent AI systems.") |
|
|
|
|
|
descriptions = { |
|
"Reinforcement Learning 🎮": "Questions related to reinforcement learning algorithms and applications 🕹️", |
|
"Natural Language Processing 🗣️": "Questions about natural language processing techniques and chatbot development 🗨️", |
|
"Multi-Agent Systems 🤝": "Questions pertaining to multi-agent systems and cooperative AI interactions 🤖", |
|
"Conversational AI 🗨️": "Questions on building conversational AI agents and chatbots for various platforms 💬", |
|
"Distributed AI Systems 🌐": "Questions about distributed AI systems and their implementation in networked environments 🌐", |
|
"AI Ethics and Bias 🤔": "Questions related to ethics and bias considerations in AI systems and decision-making 🧠", |
|
"AI in Healthcare 🏥": "Questions about the application of AI in healthcare and medical diagnosis 🩺", |
|
"AI in Autonomous Vehicles 🚗": "Questions on the use of AI in autonomous vehicles and self-driving technology 🚗" |
|
} |
|
|
|
|
|
col1, col2, col3, col4 = st.columns([1, 1, 1, 1], gap="small") |
|
|
|
|
|
if col1.button("Reinforcement Learning 🎮"): |
|
st.write(descriptions["Reinforcement Learning 🎮"]) |
|
StreamLLMChatResponse(descriptions["Reinforcement Learning 🎮"]) |
|
|
|
if col2.button("Natural Language Processing 🗣️"): |
|
st.write(descriptions["Natural Language Processing 🗣️"]) |
|
StreamLLMChatResponse(descriptions["Natural Language Processing 🗣️"]) |
|
|
|
if col3.button("Multi-Agent Systems 🤝"): |
|
st.write(descriptions["Multi-Agent Systems 🤝"]) |
|
StreamLLMChatResponse(descriptions["Multi-Agent Systems 🤝"]) |
|
|
|
if col4.button("Conversational AI 🗨️"): |
|
st.write(descriptions["Conversational AI 🗨️"]) |
|
StreamLLMChatResponse(descriptions["Conversational AI 🗨️"]) |
|
|
|
col5, col6, col7, col8 = st.columns([1, 1, 1, 1], gap="small") |
|
|
|
if col5.button("Distributed AI Systems 🌐"): |
|
st.write(descriptions["Distributed AI Systems 🌐"]) |
|
StreamLLMChatResponse(descriptions["Distributed AI Systems 🌐"]) |
|
|
|
if col6.button("AI Ethics and Bias 🤔"): |
|
st.write(descriptions["AI Ethics and Bias 🤔"]) |
|
StreamLLMChatResponse(descriptions["AI Ethics and Bias 🤔"]) |
|
|
|
if col7.button("AI in Healthcare 🏥"): |
|
st.write(descriptions["AI in Healthcare 🏥"]) |
|
StreamLLMChatResponse(descriptions["AI in Healthcare 🏥"]) |
|
|
|
if col8.button("AI in Autonomous Vehicles 🚗"): |
|
st.write(descriptions["AI in Autonomous Vehicles 🚗"]) |
|
StreamLLMChatResponse(descriptions["AI in Autonomous Vehicles 🚗"]) |
|
|
|
|
|
|
|
def main(): |
|
|
|
st.title("Try Some Topics:") |
|
prompt = f"Write ten funny jokes that are tweet length stories that make you laugh. Show as markdown outline with emojis for each." |
|
|
|
|
|
|
|
|
|
add_multi_system_agent_topics() |
|
|
|
example_input = st.text_input("Enter your example text:", value=prompt, help="Enter text to get a response from DromeLlama.") |
|
if st.button("Run Prompt With DromeLlama", help="Click to run the prompt."): |
|
try: |
|
StreamLLMChatResponse(example_input) |
|
except: |
|
st.write('DromeLlama is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).') |
|
|
|
openai.api_key = os.getenv('OPENAI_KEY') |
|
menu = ["txt", "htm", "xlsx", "csv", "md", "py"] |
|
choice = st.sidebar.selectbox("Output File Type:", menu) |
|
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301')) |
|
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100) |
|
collength, colupload = st.columns([2,3]) |
|
with collength: |
|
max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000) |
|
with colupload: |
|
uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"]) |
|
document_sections = deque() |
|
document_responses = {} |
|
if uploaded_file is not None: |
|
file_content = read_file_content(uploaded_file, max_length) |
|
document_sections.extend(divide_document(file_content, max_length)) |
|
if len(document_sections) > 0: |
|
if st.button("👁️ View Upload"): |
|
st.markdown("**Sections of the uploaded file:**") |
|
for i, section in enumerate(list(document_sections)): |
|
st.markdown(f"**Section {i+1}**\n{section}") |
|
st.markdown("**Chat with the model:**") |
|
for i, section in enumerate(list(document_sections)): |
|
if i in document_responses: |
|
st.markdown(f"**Section {i+1}**\n{document_responses[i]}") |
|
else: |
|
if st.button(f"Chat about Section {i+1}"): |
|
st.write('Reasoning with your inputs...') |
|
response = chat_with_model(user_prompt, section, model_choice) |
|
st.write('Response:') |
|
st.write(response) |
|
document_responses[i] = response |
|
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice) |
|
create_file(filename, user_prompt, response, should_save) |
|
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) |
|
if st.button('💬 Chat'): |
|
st.write('Reasoning with your inputs...') |
|
user_prompt_sections = divide_prompt(user_prompt, max_length) |
|
full_response = '' |
|
for prompt_section in user_prompt_sections: |
|
response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice) |
|
full_response += response + '\n' |
|
response = full_response |
|
st.write('Response:') |
|
st.write(response) |
|
filename = generate_filename(user_prompt, choice) |
|
create_file(filename, user_prompt, response, should_save) |
|
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) |
|
|
|
|
|
all_files = glob.glob("*.*") |
|
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] |
|
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) |
|
if st.sidebar.button("🗑 Delete All"): |
|
for file in all_files: |
|
os.remove(file) |
|
st.experimental_rerun() |
|
if st.sidebar.button("⬇️ Download All"): |
|
zip_file = create_zip_of_files(all_files) |
|
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True) |
|
file_contents='' |
|
next_action='' |
|
for file in all_files: |
|
col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) |
|
with col1: |
|
if st.button("🌐", key="md_"+file): |
|
with open(file, 'r') as f: |
|
file_contents = f.read() |
|
next_action='md' |
|
with col2: |
|
st.markdown(get_table_download_link(file), unsafe_allow_html=True) |
|
with col3: |
|
if st.button("📂", key="open_"+file): |
|
with open(file, 'r') as f: |
|
file_contents = f.read() |
|
next_action='open' |
|
with col4: |
|
if st.button("🔍", key="read_"+file): |
|
with open(file, 'r') as f: |
|
file_contents = f.read() |
|
next_action='search' |
|
with col5: |
|
if st.button("🗑", key="delete_"+file): |
|
os.remove(file) |
|
st.experimental_rerun() |
|
|
|
|
|
if len(file_contents) > 0: |
|
if next_action=='open': |
|
file_content_area = st.text_area("File Contents:", file_contents, height=500) |
|
if next_action=='md': |
|
st.markdown(file_contents) |
|
if next_action=='search': |
|
file_content_area = st.text_area("File Contents:", file_contents, height=500) |
|
st.write('Reasoning with your inputs...') |
|
|
|
|
|
response = StreamLLMChatResponse(file_contents) |
|
filename = generate_filename(user_prompt, ".md") |
|
create_file(filename, file_contents, response, should_save) |
|
SpeechSynthesis(response) |
|
|
|
|
|
|
|
|
|
|
|
|
|
st.experimental_rerun() |
|
|
|
|
|
|
|
feedback = st.radio("Step 8: Give your feedback", ("👍 Upvote", "👎 Downvote")) |
|
if feedback == "👍 Upvote": |
|
st.write("You upvoted 👍. Thank you for your feedback!") |
|
else: |
|
st.write("You downvoted 👎. Thank you for your feedback!") |
|
|
|
load_dotenv() |
|
st.write(css, unsafe_allow_html=True) |
|
st.header("Chat with documents :books:") |
|
user_question = st.text_input("Ask a question about your documents:") |
|
if user_question: |
|
process_user_input(user_question) |
|
with st.sidebar: |
|
st.subheader("Your documents") |
|
docs = st.file_uploader("import documents", accept_multiple_files=True) |
|
with st.spinner("Processing"): |
|
raw = pdf2txt(docs) |
|
if len(raw) > 0: |
|
length = str(len(raw)) |
|
text_chunks = txt2chunks(raw) |
|
vectorstore = vector_store(text_chunks) |
|
st.session_state.conversation = get_chain(vectorstore) |
|
st.markdown('# AI Search Index of Length:' + length + ' Created.') |
|
filename = generate_filename(raw, 'txt') |
|
create_file(filename, raw, '', should_save) |
|
|
|
|
|
if __name__ == "__main__": |
|
whisper_main() |
|
main() |
|
add_Med_Licensing_Exam_Dataset() |