Spaces:
Build error
Build error
import logging | |
import os | |
import time | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
import torchaudio | |
import hubert_model | |
import utils | |
from models import SynthesizerTrn | |
from preprocess_wave import FeatureInput | |
logging.getLogger('matplotlib').setLevel(logging.WARNING) | |
dev = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def timeit(func): | |
def run(*args, **kwargs): | |
t = time.time() | |
res = func(*args, **kwargs) | |
print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t)) | |
return res | |
return run | |
def get_end_file(dir_path, end): | |
file_lists = [] | |
for root, dirs, files in os.walk(dir_path): | |
files = [f for f in files if f[0] != '.'] | |
dirs[:] = [d for d in dirs if d[0] != '.'] | |
for f_file in files: | |
if f_file.endswith(end): | |
file_lists.append(os.path.join(root, f_file).replace("\\", "/")) | |
return file_lists | |
def load_model(model_path, config_path): | |
# 获取模型配置 | |
hps_ms = utils.get_hparams_from_file(config_path) | |
n_g_ms = SynthesizerTrn( | |
178, | |
hps_ms.data.filter_length // 2 + 1, | |
hps_ms.train.segment_size // hps_ms.data.hop_length, | |
n_speakers=hps_ms.data.n_speakers, | |
**hps_ms.model) | |
_ = utils.load_checkpoint(model_path, n_g_ms, None) | |
_ = n_g_ms.eval().to(dev) | |
# 加载hubert | |
hubert_soft = hubert_model.hubert_soft(get_end_file("./", "pt")[0]) | |
feature_input = FeatureInput(hps_ms.data.sampling_rate, hps_ms.data.hop_length) | |
return n_g_ms, hubert_soft, feature_input, hps_ms | |
def resize2d_f0(x, target_len): | |
source = np.array(x) | |
source[source < 0.001] = np.nan | |
target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)), | |
source) | |
res = np.nan_to_num(target) | |
return res | |
def get_units(in_path, hubert_soft): | |
source, sr = torchaudio.load(in_path) | |
source = torchaudio.functional.resample(source, sr, 16000) | |
if len(source.shape) == 2 and source.shape[1] >= 2: | |
source = torch.mean(source, dim=0).unsqueeze(0) | |
source = source.unsqueeze(0).to(dev) | |
with torch.inference_mode(): | |
units = hubert_soft.units(source) | |
return units | |
def transcribe(source_path, length, transform, feature_input): | |
feature_pit = feature_input.compute_f0(source_path) | |
feature_pit = feature_pit * 2 ** (transform / 12) | |
feature_pit = resize2d_f0(feature_pit, length) | |
coarse_pit = feature_input.coarse_f0(feature_pit) | |
return coarse_pit | |
def get_unit_pitch(in_path, tran, hubert_soft, feature_input): | |
soft = get_units(in_path, hubert_soft).squeeze(0).cpu().numpy() | |
input_pitch = transcribe(in_path, soft.shape[0], tran, feature_input) | |
return soft, input_pitch | |
def clean_pitch(input_pitch): | |
num_nan = np.sum(input_pitch == 1) | |
if num_nan / len(input_pitch) > 0.9: | |
input_pitch[input_pitch != 1] = 1 | |
return input_pitch | |
def plt_pitch(input_pitch): | |
input_pitch = input_pitch.astype(float) | |
input_pitch[input_pitch == 1] = np.nan | |
return input_pitch | |
def f0_to_pitch(ff): | |
f0_pitch = 69 + 12 * np.log2(ff / 440) | |
return f0_pitch | |
def f0_plt(in_path, out_path, tran, hubert_soft, feature_input): | |
s1, input_pitch = get_unit_pitch(in_path, tran, hubert_soft, feature_input) | |
s2, output_pitch = get_unit_pitch(out_path, 0, hubert_soft, feature_input) | |
plt.clf() | |
plt.plot(plt_pitch(input_pitch), color="#66ccff") | |
plt.plot(plt_pitch(output_pitch), color="orange") | |
plt.savefig("temp.jpg") | |
def calc_error(in_path, out_path, tran, feature_input): | |
input_pitch = feature_input.compute_f0(in_path) | |
output_pitch = feature_input.compute_f0(out_path) | |
sum_y = [] | |
if np.sum(input_pitch == 0) / len(input_pitch) > 0.9: | |
mistake, var_take = 0, 0 | |
else: | |
for i in range(min(len(input_pitch), len(output_pitch))): | |
if input_pitch[i] > 0 and output_pitch[i] > 0: | |
sum_y.append(abs(f0_to_pitch(output_pitch[i]) - (f0_to_pitch(input_pitch[i]) + tran))) | |
num_y = 0 | |
for x in sum_y: | |
num_y += x | |
len_y = len(sum_y) if len(sum_y) else 1 | |
mistake = round(float(num_y / len_y), 2) | |
var_take = round(float(np.std(sum_y, ddof=1)), 2) | |
return mistake, var_take | |
def infer(source_path, speaker_id, tran, net_g_ms, hubert_soft, feature_input): | |
sid = torch.LongTensor([int(speaker_id)]).to(dev) | |
soft, pitch = get_unit_pitch(source_path, tran, hubert_soft, feature_input) | |
pitch = torch.LongTensor(clean_pitch(pitch)).unsqueeze(0).to(dev) | |
stn_tst = torch.FloatTensor(soft) | |
with torch.no_grad(): | |
x_tst = stn_tst.unsqueeze(0).to(dev) | |
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev) | |
audio = \ | |
net_g_ms.infer(x_tst, x_tst_lengths, pitch, sid=sid, noise_scale=0.3, noise_scale_w=0.5, | |
length_scale=1)[0][ | |
0, 0].data.float().cpu().numpy() | |
return audio, audio.shape[-1] | |
def del_temp_wav(path_data): | |
for i in get_end_file(path_data, "wav"): # os.listdir(path_data)#返回一个列表,里面是当前目录下面的所有东西的相对路径 | |
os.remove(i) | |
def format_wav(audio_path, tar_sample): | |
raw_audio, raw_sample_rate = torchaudio.load(audio_path) | |
if len(raw_audio.shape) == 2 and raw_audio.shape[1] >= 2: | |
raw_audio = torch.mean(raw_audio, dim=0).unsqueeze(0) | |
tar_audio = torchaudio.functional.resample(raw_audio, raw_sample_rate, tar_sample) | |
torchaudio.save(audio_path[:-4] + ".wav", tar_audio, tar_sample) | |
return tar_audio, tar_sample | |
def fill_a_to_b(a, b): | |
if len(a) < len(b): | |
for _ in range(0, len(b) - len(a)): | |
a.append(a[0]) | |
def mkdir(paths: list): | |
for path in paths: | |
if not os.path.exists(path): | |
os.mkdir(path) | |