File size: 2,333 Bytes
14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
#!/usr/bin/env python3
import random
import requests
from datasets import load_dataset, Dataset, DatasetDict
path = "pminervini/HaluEval"
API_URL = f"https://datasets-server.huggingface.co/splits?dataset={path}"
response = requests.get(API_URL)
res_json = response.json()
gold_splits = {"dialogue", "qa", "summarization", "general"}
available_splits = {split["config"] for split in res_json["splits"]} if "splits" in res_json else set()
name_to_ds = dict()
for name in gold_splits:
ds = load_dataset("json", data_files={"data": f"data/{name}_data.json"})
name_to_ds[name] = ds
# if name not in available_splits:
ds.push_to_hub(path, config_name=name)
def list_to_dict(lst: list) -> dict:
res = dict()
for entry in lst:
for k, v in entry.items():
if k not in res:
res[k] = []
res[k] += [v]
return res
for name in gold_splits - {"general"}:
random.seed(42)
ds = name_to_ds[name]
new_entry_lst = []
for entry in ds["data"]:
is_hallucinated = random.random() > 0.5
new_entry = None
if name in {"qa"}:
new_entry = {
"knowledge": entry["knowledge"],
"question": entry["question"],
"answer": entry[f'{"hallucinated" if is_hallucinated else "right"}_answer'],
"hallucination": "yes" if is_hallucinated else "no",
}
if name in {"dialogue"}:
new_entry = {
"knowledge": entry["knowledge"],
"dialogue_history": entry["dialogue_history"],
"response": entry[f'{"hallucinated" if is_hallucinated else "right"}_response'],
"hallucination": "yes" if is_hallucinated else "no",
}
if name in {"summarization"}:
new_entry = {
"document": entry["document"],
"summary": entry[f'{"hallucinated" if is_hallucinated else "right"}_summary'],
"hallucination": "yes" if is_hallucinated else "no",
}
assert new_entry is not None
new_entry_lst += [new_entry]
new_ds_map = list_to_dict(new_entry_lst)
new_ds = Dataset.from_dict(new_ds_map)
new_dsd = DatasetDict({"data": new_ds})
new_dsd.push_to_hub(path, config_name=f"{name}_samples")
|