File size: 11,520 Bytes
14e4843 4736a54 14e4843 034968f 17162c6 84f0fa3 034968f b077d7d 84f0fa3 17162c6 84f0fa3 e6c97c0 84f0fa3 17162c6 f745515 84f0fa3 034968f 14e4843 a89d71b 14e4843 2d754ab a89d71b 14e4843 a89d71b 14e4843 a89d71b 14e4843 a89d71b 14e4843 a89d71b 14e4843 a89d71b 14e4843 a89d71b fe8e6f7 4736a54 e6c97c0 271706f fe8e6f7 14e4843 d6d7ec6 14e4843 82a6ed1 14e4843 998f2a6 14e4843 1c22d8d b077d7d 1c22d8d 14e4843 88d1c0e d70baf6 fe8e6f7 d70baf6 fe8e6f7 4736a54 d70baf6 e6c97c0 034968f 14e4843 82a6ed1 b077d7d 82a6ed1 14e4843 86b14ca 14e4843 b077d7d 14e4843 b077d7d 14e4843 b077d7d 14e4843 b077d7d 14e4843 1c22d8d b077d7d 5fd4d0a fe8e6f7 b077d7d 515ea1a 1c22d8d 4736a54 1c22d8d b077d7d 1c22d8d fe8e6f7 515ea1a 1c22d8d 4736a54 60d9c33 fe8e6f7 22ce8a7 60d9c33 1c22d8d 60d9c33 22ce8a7 fe8e6f7 60d9c33 14e4843 b077d7d 14e4843 b077d7d 14e4843 b077d7d 14e4843 b077d7d 14e4843 d70baf6 14e4843 5373bd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
from dataclasses import dataclass, make_dataclass
from enum import Enum
import pandas as pd
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
E2Es = "E2E(s)" #"End-to-end time (s)"
PREs = "PRE(s)" #"Prefilling time (s)"
TS = "T/s" #Decoding throughput (tok/s)
InFrame = "Method" #"Inference framework"
MULTIPLE_CHOICEs = ["mmlu"]
GPU_TEMP = 'Temp(C)'
GPU_Power = 'Power(W)'
GPU_Mem = 'Mem(G)'
GPU_Name = "GPU"
GPU_Util = 'Util(%)'
MFU = 'S-MFU(%)'
MBU = 'S-MBU(%)'
BATCH_SIZE = 'bs'
PRECISION = "Precision"
system_metrics_to_name_map = {
"end_to_end_time": f"{E2Es}",
"prefilling_time": f"{PREs}",
"decoding_throughput": f"{TS}",
"mfu": f"{MFU}",
"mbu": f"{MBU}"
}
gpu_metrics_to_name_map = {
GPU_Util: GPU_Util,
GPU_TEMP: GPU_TEMP,
GPU_Power: GPU_Power,
GPU_Mem: GPU_Mem,
"batch_size": BATCH_SIZE,
"precision": PRECISION,
GPU_Name: GPU_Name
}
@dataclass
class Task:
benchmark: str
metric: str
col_name: str
class Tasks(Enum):
# XXX include me back at some point
# nqopen = Task("nq8", "em", "NQ Open/EM")
# triviaqa = Task("tqa8", "em", "TriviaQA/EM")
# truthfulqa_mc1 = Task("truthfulqa_mc1", "acc", "TruthQA MC1/Acc")
# truthfulqa_mc2 = Task("truthfulqa_mc2", "acc", "TruthQA MC2/Acc")
# truthfulqa_gen = Task("truthfulqa_gen", "rougeL_acc", "TruthQA Gen/ROUGE")
# xsum_r = Task("xsum_v2", "rougeL", "XSum/ROUGE")
# xsum_f = Task("xsum_v2", "factKB", "XSum/factKB")
# xsum_b = Task("xsum_v2", "bertscore_precision", "XSum/BERT-P")
# cnndm_r = Task("cnndm_v2", "rougeL", "CNN-DM/ROUGE")
# cnndm_f = Task("cnndm_v2", "factKB", "CNN-DM/factKB")
# cnndm_b = Task("cnndm_v2", "bertscore_precision", "CNN-DM/BERT-P")
# race = Task("race", "acc", "RACE/Acc")
# squadv2 = Task("squadv2", "exact", "SQUaDv2/EM")
# memotrap = Task("memo-trap_v2", "acc", "MemoTrap/Acc")
# ifeval = Task("ifeval", "prompt_level_strict_acc", "IFEval/Acc")
# faithdial = Task("faithdial_hallu_v2", "acc", "FaithDial/Acc")
# halueval_qa = Task("halueval_qa", "acc", "HaluQA/Acc")
# halueval_summ = Task("halueval_summarization", "acc", "HaluSumm/Acc")
# halueval_dial = Task("halueval_dialogue", "acc", "HaluDial/Acc")
# # XXX include me back at some point
# selfcheck = Task("selfcheckgpt", "max-selfcheckgpt", "SelfCheckGPT")
mmlu = Task("mmlu", "acc", "MMLU") #MMLU/Acc (5-shot)
gsm8k = Task("gsm8k_custom", "em", "GSM8K") #GSM8K/EM (5-shot)
# gsm8k_cot = Task("gsm8k_cot", "em", "GSM8K COT") #GSM8K COT/EM (5-shot)
arena_hard = Task("arena_hard", "score", "Arena Hard") #Arena Hard/Score
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
dummy: bool = False
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
# #Scores
# # auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Avg", "number", True)])
# Inference framework
auto_eval_column_dict.append(["inference_framework", ColumnContent, ColumnContent(f"{InFrame}", "str", True, dummy=True)])
for task in Tasks:
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# System performance metrics
auto_eval_column_dict.append([f"{task.name}_end_to_end_time", ColumnContent, ColumnContent(f"{task.value.col_name} {E2Es}", "number", True, hidden=True)])
auto_eval_column_dict.append([f"{task.name}_batch_size", ColumnContent, ColumnContent(f"{task.value.col_name} {BATCH_SIZE}", "number", True, hidden=True)])
# auto_eval_column_dict.append([f"{task.name}_precision", ColumnContent, ColumnContent(f"{task.value.col_name} {PRECISION}", "str", True, hidden=True)])
# auto_eval_column_dict.append([f"{task.name}_gpu_mem", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Mem}", "number", True, hidden=True)])
auto_eval_column_dict.append([f"{task.name}_gpu", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Name}", "str", True, hidden=True)])
# auto_eval_column_dict.append([f"{task.name}_gpu_util", ColumnContent, ColumnContent(f"{task.value.col_name} {GPU_Util}", "number", True, hidden=True)])
if task.value.benchmark in MULTIPLE_CHOICEs:
continue
# auto_eval_column_dict.append([f"{task.name}_prefilling_time", ColumnContent, ColumnContent(f"{task.value.col_name} {PREs}", "number", False, hidden=True)])
auto_eval_column_dict.append([f"{task.name}_decoding_throughput", ColumnContent, ColumnContent(f"{task.value.col_name} {TS}", "number", True, hidden=True)])
auto_eval_column_dict.append([f"{task.name}_mbu", ColumnContent, ColumnContent(f"{task.value.col_name} {MBU}", "number", True, hidden=True)])
auto_eval_column_dict.append([f"{task.name}_mfu", ColumnContent, ColumnContent(f"{task.value.col_name} {MFU}", "number", True, hidden=True)])
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False, dummy=True)])
# auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
# auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", True, dummy=True)])
# auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
# auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
# auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False)])
# auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
# auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
# Dummy column for the search bar (hidden by the custom CSS)
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
private = ColumnContent("private", "bool", True)
precision = ColumnContent("precision", "str", True)
weight_type = ColumnContent("weight_type", "str", "Original")
model_framework = ColumnContent("inference_framework", "str", True)
status = ColumnContent("status", "str", True)
@dataclass
class ModelDetails:
name: str
symbol: str = "" # emoji, only for the model type
class ModelType(Enum):
# PT = ModelDetails(name="pretrained", symbol="π’")
# FT = ModelDetails(name="fine-tuned on domain-specific datasets", symbol="πΆ")
chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="π¬")
# merges = ModelDetails(name="base merges and moerges", symbol="π€")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
# if "fine-tuned" in type or "πΆ" in type:
# return ModelType.FT
# if "pretrained" in type or "π’" in type:
# return ModelType.PT
if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "π¦", "β", "π¬"]]):
return ModelType.chat
# if "merge" in type or "π€" in type:
# return ModelType.merges
return ModelType.Unknown
class InferenceFramework(Enum):
# "moe-infinity", hf-chat
# MoE_Infinity = ModelDetails("moe-infinity")
HF_Chat = ModelDetails("hf-chat")
VLLM = ModelDetails("vllm_moe")
TRTLLM = ModelDetails("tensorrt_llm")
VLLM_FIX = ModelDetails("vllm_moe_fixbs")
Unknown = ModelDetails("?")
def to_str(self):
return self.value.name
@staticmethod
def from_str(inference_framework: str):
# if inference_framework in ["moe-infinity"]:
# return InferenceFramework.MoE_Infinity
if inference_framework in ["tensorrt_llm"]:
return InferenceFramework.TRTLLM
if inference_framework in ["hf-chat"]:
return InferenceFramework.HF_Chat
if inference_framework in ["vllm_moe"]:
return InferenceFramework.VLLM
if inference_framework in ["vllm_moe_fixbs"]:
return InferenceFramework.VLLM_FIX
return InferenceFramework.Unknown
class GPUType(Enum):
A100_sxm = ModelDetails("NVIDIA-A100-SXM4-80GB")
A100_pcie = ModelDetails("NVIDIA-A100-PCIe-80GB")
Unknown = ModelDetails("?")
def to_str(self):
return self.value.name
@staticmethod
def from_str(gpu_type: str):
if gpu_type in ["NVIDIA-A100-PCIe-80GB"]:
return GPUType.A100_pcie
if gpu_type in ["NVIDIA-A100-SXM4-80GB"]:
return GPUType.A100_sxm
return GPUType.Unknown
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
# float32 = ModelDetails("float32")
# float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
qt_8bit = ModelDetails("8bit")
qt_4bit = ModelDetails("4bit")
# qt_GPTQ = ModelDetails("GPTQ")
Unknown = ModelDetails("?")
@staticmethod
def from_str(precision: str):
# if precision in ["torch.float32", "float32"]:
# return Precision.float32
# if precision in ["torch.float16", "float16"]:
# return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
if precision in ["8bit"]:
return Precision.qt_8bit
if precision in ["4bit"]:
return Precision.qt_4bit
# if precision in ["GPTQ", "None"]:
# return Precision.qt_GPTQ
return Precision.Unknown
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
# NUMERIC_INTERVALS = {
# "?": pd.Interval(-1, 0, closed="right"),
# "~1.5": pd.Interval(0, 2, closed="right"),
# "~3": pd.Interval(2, 4, closed="right"),
# "~7": pd.Interval(4, 9, closed="right"),
# "~13": pd.Interval(9, 20, closed="right"),
# "~35": pd.Interval(20, 45, closed="right"),
# "~60": pd.Interval(45, 70, closed="right"),
# "70+": pd.Interval(70, 10000, closed="right"),
# }
|