|
import json |
|
import os |
|
from tqdm import tqdm |
|
import copy |
|
import pandas as pd |
|
import numpy as np |
|
|
|
from src.display.formatting import has_no_nan_values, make_clickable_model |
|
from src.display.utils import AutoEvalColumn, EvalQueueColumn |
|
from src.leaderboard.filter_models import filter_models |
|
from src.leaderboard.read_evals import get_raw_eval_results, EvalResult, update_model_type_with_open_llm_request_file |
|
|
|
from src.backend.envs import Tasks as BackendTasks |
|
from src.display.utils import Tasks |
|
from src.display.utils import system_metrics_to_name_map, gpu_metrics_to_name_map |
|
|
|
def get_leaderboard_df( |
|
results_path: str, |
|
requests_path: str, |
|
requests_path_open_llm: str, |
|
cols: list, |
|
benchmark_cols: list, |
|
is_backend: bool = False, |
|
) -> tuple[list[EvalResult], pd.DataFrame]: |
|
|
|
raw_data: list[EvalResult] = get_raw_eval_results(results_path, requests_path, requests_path_open_llm) |
|
if requests_path_open_llm != "": |
|
for result_idx in tqdm(range(len(raw_data)), desc="updating model type with open llm leaderboard"): |
|
raw_data[result_idx] = update_model_type_with_open_llm_request_file( |
|
raw_data[result_idx], requests_path_open_llm |
|
) |
|
|
|
|
|
all_data_json_ = [v.to_dict() for v in raw_data] |
|
|
|
name_to_bm_map = {} |
|
|
|
task_iterator = Tasks |
|
if is_backend is True: |
|
task_iterator = BackendTasks |
|
|
|
for task in task_iterator: |
|
task = task.value |
|
name = task.col_name |
|
bm = (task.benchmark, task.metric) |
|
name_to_bm_map[name] = bm |
|
|
|
|
|
|
|
all_data_json = [] |
|
for entry in all_data_json_: |
|
new_entry = copy.deepcopy(entry) |
|
for k, v in entry.items(): |
|
if k in name_to_bm_map: |
|
benchmark, metric = name_to_bm_map[k] |
|
new_entry[k] = entry[k][metric] |
|
for sys_metric, metric_namne in system_metrics_to_name_map.items(): |
|
if sys_metric in entry[k]: |
|
new_entry[f"{k} {metric_namne}"] = entry[k][sys_metric] |
|
|
|
for gpu_metric, metric_namne in gpu_metrics_to_name_map.items(): |
|
if gpu_metric in entry[k]: |
|
new_entry[f"{k} {metric_namne}"] = entry[k][gpu_metric] |
|
all_data_json += [new_entry] |
|
|
|
|
|
filter_models(all_data_json) |
|
|
|
df = pd.DataFrame.from_records(all_data_json) |
|
|
|
|
|
|
|
for col in cols: |
|
if col not in df.columns: |
|
df[col] = np.nan |
|
|
|
if not df.empty: |
|
df = df.round(decimals=4) |
|
|
|
|
|
|
|
|
|
return raw_data, df |
|
|
|
|
|
def get_evaluation_queue_df(save_path: str, cols: list) -> tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: |
|
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] |
|
all_evals = [] |
|
|
|
for entry in entries: |
|
if ".json" in entry: |
|
file_path = os.path.join(save_path, entry) |
|
with open(file_path) as fp: |
|
data = json.load(fp) |
|
|
|
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) |
|
data[EvalQueueColumn.revision.name] = data.get("revision", "main") |
|
data[EvalQueueColumn.model_framework.name] = data.get("inference_framework", "-") |
|
|
|
all_evals.append(data) |
|
elif ".md" not in entry: |
|
|
|
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")] |
|
for sub_entry in sub_entries: |
|
file_path = os.path.join(save_path, entry, sub_entry) |
|
with open(file_path) as fp: |
|
data = json.load(fp) |
|
|
|
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) |
|
data[EvalQueueColumn.revision.name] = data.get("revision", "main") |
|
data[EvalQueueColumn.model_framework.name] = data.get("inference_framework", "-") |
|
all_evals.append(data) |
|
|
|
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] |
|
running_list = [e for e in all_evals if e["status"] == "RUNNING"] |
|
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] |
|
df_pending = pd.DataFrame.from_records(pending_list, columns=cols) |
|
df_running = pd.DataFrame.from_records(running_list, columns=cols) |
|
df_finished = pd.DataFrame.from_records(finished_list, columns=cols) |
|
return df_finished[cols], df_running[cols], df_pending[cols] |
|
|