|
|
|
import os |
|
import datetime |
|
import socket |
|
import base64 |
|
from threading import Thread |
|
|
|
import gradio as gr |
|
import pandas as pd |
|
import time |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
|
|
from huggingface_hub import snapshot_download |
|
|
|
from src.display.about import ( |
|
CITATION_BUTTON_LABEL, |
|
CITATION_BUTTON_TEXT, |
|
EVALUATION_QUEUE_TEXT, |
|
INTRODUCTION_TEXT, |
|
LLM_BENCHMARKS_TEXT, |
|
LLM_BENCHMARKS_DETAILS, |
|
FAQ_TEXT, |
|
TITLE, |
|
ACKNOWLEDGEMENT_TEXT, |
|
) |
|
|
|
from src.display.css_html_js import custom_css |
|
|
|
from src.display.utils import ( |
|
BENCHMARK_COLS, |
|
COLS, |
|
EVAL_COLS, |
|
EVAL_TYPES, |
|
TYPES, |
|
AutoEvalColumn, |
|
ModelType, |
|
InferenceFramework, |
|
fields, |
|
WeightType, |
|
Precision, |
|
GPUType |
|
) |
|
|
|
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, \ |
|
QUEUE_REPO, REPO_ID, RESULTS_REPO, DEBUG_QUEUE_REPO, DEBUG_RESULTS_REPO |
|
from src.populate import get_evaluation_queue_df, get_leaderboard_df |
|
from src.submission.submit import add_new_eval |
|
from src.utils import get_dataset_summary_table |
|
|
|
def get_args(): |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser(description="Run the LLM Leaderboard") |
|
parser.add_argument("--debug", action="store_true", help="Run in debug mode") |
|
return parser.parse_args() |
|
|
|
args = get_args() |
|
if args.debug: |
|
print("Running in debug mode") |
|
QUEUE_REPO = DEBUG_QUEUE_REPO |
|
RESULTS_REPO = DEBUG_RESULTS_REPO |
|
|
|
def ui_snapshot_download(repo_id, local_dir, repo_type, tqdm_class, etag_timeout): |
|
try: |
|
print(local_dir) |
|
snapshot_download( |
|
repo_id=repo_id, local_dir=local_dir, repo_type=repo_type, tqdm_class=tqdm_class, etag_timeout=etag_timeout |
|
) |
|
except Exception as e: |
|
restart_space() |
|
|
|
|
|
def restart_space(): |
|
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN) |
|
|
|
|
|
def init_space(): |
|
|
|
|
|
if socket.gethostname() not in {"neuromancer"}: |
|
|
|
ui_snapshot_download( |
|
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 |
|
) |
|
ui_snapshot_download( |
|
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 |
|
) |
|
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, "", COLS, BENCHMARK_COLS) |
|
|
|
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df( |
|
EVAL_REQUESTS_PATH, EVAL_COLS |
|
) |
|
|
|
return None, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df |
|
|
|
|
|
def add_benchmark_columns(shown_columns): |
|
benchmark_columns = [] |
|
for benchmark in BENCHMARK_COLS: |
|
if benchmark in shown_columns: |
|
for c in COLS: |
|
if benchmark in c and benchmark != c: |
|
benchmark_columns.append(c) |
|
return benchmark_columns |
|
|
|
|
|
|
|
def update_table( |
|
hidden_df: pd.DataFrame, columns: list, type_query: list, precision_query: list, size_query: list, query: str |
|
): |
|
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query) |
|
filtered_df = filter_queries(query, filtered_df) |
|
benchmark_columns = add_benchmark_columns(columns) |
|
df = select_columns(filtered_df, columns + benchmark_columns) |
|
return df |
|
|
|
|
|
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: |
|
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))] |
|
|
|
|
|
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: |
|
|
|
|
|
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] |
|
dummy_col = [AutoEvalColumn.dummy.name] |
|
|
|
|
|
filtered_df = df[ |
|
|
|
always_here_cols |
|
+ [c for c in COLS if c in df.columns and c in columns] |
|
+ dummy_col |
|
] |
|
return filtered_df |
|
|
|
|
|
def filter_queries(query: str, filtered_df: pd.DataFrame): |
|
final_df = [] |
|
if query != "": |
|
queries = [q.strip() for q in query.split(";")] |
|
for _q in queries: |
|
_q = _q.strip() |
|
if _q != "": |
|
temp_filtered_df = search_table(filtered_df, _q) |
|
if len(temp_filtered_df) > 0: |
|
final_df.append(temp_filtered_df) |
|
if len(final_df) > 0: |
|
filtered_df = pd.concat(final_df) |
|
subset = [AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] |
|
filtered_df = filtered_df.drop_duplicates(subset=subset) |
|
return filtered_df |
|
|
|
|
|
def filter_models(df: pd.DataFrame, type_query: list, size_query: list, precision_query: list) -> pd.DataFrame: |
|
|
|
filtered_df = df |
|
|
|
type_emoji = [t[0] for t in type_query] |
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] |
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] |
|
|
|
|
|
|
|
|
|
|
|
|
|
return filtered_df |
|
|
|
shown_columns = None |
|
dataset_df, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space() |
|
leaderboard_df = original_df.copy() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_query(request: gr.Request): |
|
query = request.query_params.get("query") or "" |
|
return query |
|
|
|
|
|
def get_image_html(url, image_path): |
|
with open(image_path, "rb") as image_file: |
|
encoded_string = base64.b64encode(image_file.read()).decode() |
|
return f'<a href="{url}" target="_blank"><img src="data:image/jpg;base64,{encoded_string}" alt="NetMind.AI Logo" style="width:100pt;"></a>' |
|
|
|
|
|
|
|
image_html = get_image_html("https://netmind.ai/home", "./src/display/imgs/Netmind.AI_LOGO.jpg") |
|
|
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
gr.HTML(ACKNOWLEDGEMENT_TEXT.format(image_html=image_html)) |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("open-moe-llm-leaderboard", elem_id="llm-benchmark-tab-table", id=0): |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
search_bar = gr.Textbox( |
|
placeholder=" 🔍 Model search (separate multiple queries with `;`)", |
|
show_label=False, |
|
elem_id="search-bar" |
|
) |
|
with gr.Row(): |
|
shown_columns = gr.CheckboxGroup( |
|
choices=[ |
|
c.name |
|
for c in fields(AutoEvalColumn) |
|
if not c.hidden and not c.never_hidden and not c.dummy |
|
], |
|
value=[ |
|
c.name |
|
for c in fields(AutoEvalColumn) |
|
if c.displayed_by_default and not c.hidden and not c.never_hidden |
|
], |
|
label="Select columns to show", |
|
elem_id="column-select", |
|
interactive=True, |
|
) |
|
|
|
with gr.Column(min_width=320): |
|
filter_columns_size = gr.CheckboxGroup( |
|
label="Inference frameworks", |
|
choices=[t.to_str() for t in InferenceFramework], |
|
value=[t.to_str() for t in InferenceFramework], |
|
interactive=True, |
|
elem_id="filter-columns-size", |
|
) |
|
|
|
filter_columns_type = gr.CheckboxGroup( |
|
label="Model types", |
|
choices=[t.to_str() for t in ModelType], |
|
value=[t.to_str() for t in ModelType], |
|
interactive=True, |
|
elem_id="filter-columns-type", |
|
) |
|
|
|
filter_columns_precision = gr.CheckboxGroup( |
|
label="Precision", |
|
choices=[i.value.name for i in Precision], |
|
value=[i.value.name for i in Precision], |
|
interactive=True, |
|
elem_id="filter-columns-precision", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
benchmark_columns = add_benchmark_columns(shown_columns.value) |
|
leaderboard_table = gr.components.Dataframe( |
|
value=( |
|
leaderboard_df[ |
|
[c.name for c in fields(AutoEvalColumn) if c.never_hidden] |
|
+ shown_columns.value |
|
+ benchmark_columns |
|
+ [AutoEvalColumn.dummy.name] |
|
] |
|
if leaderboard_df.empty is False |
|
else leaderboard_df |
|
), |
|
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value + benchmark_columns, |
|
datatype=TYPES, |
|
elem_id="leaderboard-table", |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
|
|
hidden_leaderboard_table_for_search = gr.components.Dataframe( |
|
value=original_df[COLS] if original_df.empty is False else original_df, |
|
headers=COLS, |
|
datatype=TYPES, |
|
visible=False, |
|
) |
|
|
|
search_bar.submit( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
shown_columns, |
|
filter_columns_type, |
|
filter_columns_precision, |
|
filter_columns_size, |
|
search_bar, |
|
], |
|
leaderboard_table |
|
) |
|
|
|
|
|
demo.load(load_query, inputs=[], outputs=[search_bar]) |
|
|
|
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size]: |
|
selector.change( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
shown_columns, |
|
filter_columns_type, |
|
filter_columns_precision, |
|
filter_columns_size, |
|
search_bar, |
|
], |
|
leaderboard_table, |
|
queue=True, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.TabItem("Submit a model ", elem_id="llm-benchmark-tab-table", id=3): |
|
with gr.Column(): |
|
with gr.Row(): |
|
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Column(): |
|
with gr.Accordion(f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", open=False): |
|
with gr.Row(): |
|
finished_eval_table = gr.components.Dataframe( |
|
value=finished_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5 |
|
) |
|
|
|
with gr.Accordion(f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", open=False): |
|
with gr.Row(): |
|
running_eval_table = gr.components.Dataframe( |
|
value=running_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5 |
|
) |
|
|
|
with gr.Accordion(f"⏳ Scheduled Evaluation Queue ({len(pending_eval_queue_df)})", open=False): |
|
with gr.Row(): |
|
pending_eval_table = gr.components.Dataframe( |
|
value=pending_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5 |
|
) |
|
|
|
with gr.Row(): |
|
gr.Markdown("# Submit your model here", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
inference_framework = gr.Dropdown( |
|
choices=[t.to_str() for t in InferenceFramework], |
|
label="Inference framework", |
|
multiselect=False, |
|
value=None, |
|
interactive=True, |
|
) |
|
|
|
gpu_type = gr.Dropdown( |
|
choices=[t.to_str() for t in GPUType], |
|
label="GPU type", |
|
multiselect=False, |
|
value="NVIDIA-A100-PCIe-80GB", |
|
interactive=True, |
|
) |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name_textbox = gr.Textbox(label="Model name") |
|
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") |
|
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC) |
|
model_type = gr.Dropdown( |
|
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], |
|
label="Model type", |
|
multiselect=False, |
|
value=None, |
|
interactive=True, |
|
) |
|
|
|
with gr.Column(): |
|
precision = gr.Dropdown( |
|
choices=[i.value.name for i in Precision if i != Precision.Unknown], |
|
label="Precision", |
|
multiselect=False, |
|
value="float32", |
|
interactive=True, |
|
) |
|
|
|
weight_type = gr.Dropdown( |
|
choices=[i.value.name for i in WeightType], |
|
label="Weights type", |
|
multiselect=False, |
|
value="Original", |
|
interactive=True, |
|
) |
|
|
|
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") |
|
|
|
submit_button = gr.Button("Submit Eval") |
|
submission_result = gr.Markdown() |
|
debug = gr.Checkbox(value=args.debug, label="Debug", visible=False) |
|
submit_button.click( |
|
add_new_eval, |
|
[ |
|
model_name_textbox, |
|
base_model_name_textbox, |
|
revision_name_textbox, |
|
precision, |
|
private, |
|
weight_type, |
|
model_type, |
|
inference_framework, |
|
debug, |
|
gpu_type |
|
], |
|
submission_result, |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Accordion("Citing this leaderboard", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
lines=20, |
|
elem_id="citation-button", |
|
show_copy_button=True, |
|
) |
|
|
|
scheduler = BackgroundScheduler() |
|
|
|
scheduler.add_job(restart_space, "interval", hours=6) |
|
|
|
def launch_backend(): |
|
import subprocess |
|
from src.backend.envs import DEVICE |
|
|
|
if DEVICE not in {"cpu"}: |
|
_ = subprocess.run(["python", "backend-cli.py"]) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
scheduler.start() |
|
demo.queue(default_concurrency_limit=40).launch() |
|
|
|
|