chivier's picture
sync from github
fe8e6f7
raw
history blame
4.94 kB
from lm_eval import evaluator
from lm_eval.tasks import TaskManager
from lm_eval.api.metrics import mean
from lm_eval.api.task import ConfigurableTask
from src.backend.manage_requests import EvalRequest
orig_process_results = ConfigurableTask.process_results
orig_aggregation = ConfigurableTask.aggregation
orig_higher_is_better = ConfigurableTask.higher_is_better
def process_results_decorator(func):
def wrapper(self, doc, results, *args, **kwargs):
processed_results = [r[0] for r in results]
end_to_end_time = sum([r[1] for r in results]) / len(results)
prefilling_time = sum([r[2] for r in results]) / len(results)
decoding_throughput = sum([r[3] for r in results]) / len(results)
mfu = sum([r[4] for r in results]) / len(results)
mbu = sum([r[5] for r in results]) / len(results)
# print(f"end_to_end_time: {end_to_end_time}, prefilling_time: {prefilling_time}, decoding_throughput: {decoding_throughput}")
result_dict = func(self, doc, processed_results, *args, **kwargs)
result_dict["end_to_end_time"] = end_to_end_time
result_dict["prefilling_time"] = prefilling_time
result_dict["decoding_throughput"] = decoding_throughput
result_dict["mfu"] = mfu
result_dict["mbu"] = mbu
return result_dict
return wrapper
ConfigurableTask.process_results = process_results_decorator(orig_process_results)
def aggregation_decorator(func):
def wrapper(self, *args, **kwargs):
aggregation_list = func(self, *args, **kwargs)
aggregation_list["end_to_end_time"] = mean
aggregation_list["prefilling_time"] = mean
aggregation_list["decoding_throughput"] = mean
aggregation_list["mfu"] = mean
aggregation_list["mbu"] = mean
return aggregation_list
return wrapper
ConfigurableTask.aggregation = aggregation_decorator(orig_aggregation)
def higher_is_better_decorator(func):
def wrapper(self, *args, **kwargs):
higher_is_better_dict = func(self, *args, **kwargs)
higher_is_better_dict["end_to_end_time"] = False
higher_is_better_dict["prefilling_time"] = False
higher_is_better_dict["decoding_throughput"] = True
higher_is_better_dict["mfu"] = True
higher_is_better_dict["mbu"] = True
return higher_is_better_dict
return wrapper
ConfigurableTask.higher_is_better = higher_is_better_decorator(orig_higher_is_better)
# from src.backend.tasks.xsum.task import XSum
# from src.backend.tasks.xsum.task_v2 import XSumv2
# from src.backend.tasks.cnndm.task import CNNDM
# from src.backend.tasks.cnndm.task_v2 import CNNDMv2
from src.backend.tasks.selfcheckgpt.task import SelfCheckGPT
from src.backend.huggingface_generate_until import HFLMwithChatTemplate
from src.backend.moe_infinity import MoEHFLM
def run_evaluation(
eval_request: EvalRequest,
task_names,
num_fewshot,
batch_size,
device,
use_cache=None,
limit=None,
max_nb_samples=100,
) -> dict:
if limit:
print("WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.")
# include_task_folder("src/backend/tasks/")
# initialize_tasks('INFO')
print(f"Allocating task manager for: {task_names}")
task_manager = TaskManager(include_path="./src/backend/tasks/")
# task_manager.initialize_tasks('INFO')
print(f"Considered Tasks: {task_names}")
# print(f"Allowed Tasks: {tasks.ALL_TASKS}")
# task_names = utils.pattern_match(task_names, tasks.ALL_TASKS)
print(f"Selected Tasks: {task_names}")
print(f"Eval Request: {eval_request}")
print(
f"Num Fewshot: {num_fewshot}, Batch Size: {batch_size}, Device: {device}, Use Cache: {use_cache}, Limit: {limit}"
)
# hf-chat is implemented to use apply_chat_template
results = evaluator.simple_evaluate(
model=eval_request.inference_framework, # "hf-chat", "moe-infinity"
model_args=eval_request.get_model_args(),
tasks=task_names,
num_fewshot=num_fewshot,
batch_size=batch_size,
max_batch_size=8,
device=device,
use_cache=use_cache,
limit=limit,
write_out=True,
task_manager=task_manager,
verbosity="WARNING",
)
results["config"]["model_dtype"] = eval_request.precision
results["config"]["model_name"] = eval_request.model
results["config"]["model_sha"] = eval_request.revision
results["config"]["inference_framework"] = eval_request.inference_framework
if max_nb_samples is not None:
if "samples" in results:
samples = results["samples"]
for task_name in samples.keys():
if len(samples[task_name]) > max_nb_samples:
results["samples"][task_name] = results["samples"][task_name][:max_nb_samples]
# print(evaluator.make_table(results))
return results