AppleSwing commited on
Commit
1d82340
2 Parent(s): 0be51d4 e1adb09

Merge branch 'pr/27' into pr/30

Browse files
backend-cli.py CHANGED
@@ -473,6 +473,7 @@ if __name__ == "__main__":
473
  precisions = args.precision.split(",")
474
  print(f"debug_model_names: {debug_model_names}, debug_task_name: {debug_task_name}, precisions: {precisions}")
475
  task_lst = TASKS_HARNESS.copy()
 
476
  for precision in precisions:
477
  for debug_model_name in debug_model_names:
478
  for task in task_lst:
 
473
  precisions = args.precision.split(",")
474
  print(f"debug_model_names: {debug_model_names}, debug_task_name: {debug_task_name}, precisions: {precisions}")
475
  task_lst = TASKS_HARNESS.copy()
476
+ RESULTS_REPO = DEBUG_RESULTS_REPO
477
  for precision in precisions:
478
  for debug_model_name in debug_model_names:
479
  for task in task_lst:
src/backend/hflm_with_measurement.py CHANGED
@@ -5,6 +5,7 @@ import sys
5
  from time import time
6
  from pathlib import Path
7
  from typing import List, Literal, Optional, Tuple, Union
 
8
 
9
  import torch
10
  import torch.nn.functional as F
@@ -37,6 +38,9 @@ from lm_eval.models.utils import (
37
  stop_sequences_criteria,
38
  )
39
  from lm_eval.models.huggingface import HFLM
 
 
 
40
 
41
 
42
  class StopWatch(TextStreamer):
@@ -67,6 +71,10 @@ class StopWatch(TextStreamer):
67
  class HFLMWithMeasurement(HFLM):
68
  def __init__(self, **kwargs):
69
  super().__init__(**kwargs)
 
 
 
 
70
 
71
  def _loglikelihood_tokens(
72
  self,
@@ -306,6 +314,7 @@ class HFLMWithMeasurement(HFLM):
306
  generation_kwargs.pop("temperature")
307
 
308
  generation_kwargs.pop("is_gsm8k")
 
309
 
310
  if not is_gsm8k:
311
  # build stopping criteria
@@ -341,12 +350,71 @@ class HFLMWithMeasurement(HFLM):
341
 
342
  batch_size = context.shape[0]
343
  output_length = stop_watch.decoding_iterations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
344
 
345
  end_to_end_time = (end - start) / batch_size
346
  prefilling_time = stop_watch.prefilling_time / batch_size
347
  decoding_time = stop_watch.decoding_time / batch_size
348
  token_per_sec = output_length / decoding_time
349
- return res, end_to_end_time, prefilling_time, token_per_sec
 
 
 
 
 
 
 
 
 
 
 
 
350
 
351
  def generate_until(
352
  self, requests: List[Instance], disable_tqdm: bool = False
@@ -461,7 +529,7 @@ class HFLMWithMeasurement(HFLM):
461
  kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
462
 
463
  # perform batched generation
464
- cont, end_to_end_time, prefilling_time, token_per_sec = self._model_generate(
465
  context=context_enc,
466
  attention_mask=attn_masks,
467
  stop=until,
@@ -476,6 +544,8 @@ class HFLMWithMeasurement(HFLM):
476
  cont_toks = cont_toks[context_enc.shape[1] :]
477
 
478
  s = self.tok_decode(cont_toks)
 
 
479
 
480
  # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
481
  if not is_gsm8k:
@@ -485,7 +555,7 @@ class HFLMWithMeasurement(HFLM):
485
  # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
486
  s = s.split(term)[0]
487
 
488
- res.append((s, end_to_end_time, prefilling_time, token_per_sec))
489
 
490
  self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
491
  pbar.update(1)
 
5
  from time import time
6
  from pathlib import Path
7
  from typing import List, Literal, Optional, Tuple, Union
8
+ from calflops import calculate_flops
9
 
10
  import torch
11
  import torch.nn.functional as F
 
38
  stop_sequences_criteria,
39
  )
40
  from lm_eval.models.huggingface import HFLM
41
+ from src.utils import get_gpu_number, get_gpu_details, get_peak_bw, transfer_precision2bytes, get_peak_flops
42
+ from src.submission.check_validity import get_model_size
43
+ from src.envs import API
44
 
45
 
46
  class StopWatch(TextStreamer):
 
71
  class HFLMWithMeasurement(HFLM):
72
  def __init__(self, **kwargs):
73
  super().__init__(**kwargs)
74
+ self.pretrained = kwargs.get("pretrained", None)
75
+ self.revision = kwargs.get("revision", None)
76
+ self.precision = kwargs.get("dtype", None)
77
+ self.total_flops = 0
78
 
79
  def _loglikelihood_tokens(
80
  self,
 
314
  generation_kwargs.pop("temperature")
315
 
316
  generation_kwargs.pop("is_gsm8k")
317
+ context_length = context.shape[1]
318
 
319
  if not is_gsm8k:
320
  # build stopping criteria
 
350
 
351
  batch_size = context.shape[0]
352
  output_length = stop_watch.decoding_iterations
353
+
354
+ precision_bytes = transfer_precision2bytes(self.precision)
355
+
356
+ model_info = API.model_info(repo_id=self.pretrained, revision=self.revision)
357
+ model_size_param = get_model_size(model_info=model_info, precision=self.precision)
358
+ model_size = model_size_param * precision_bytes
359
+
360
+ model_config = self.model.config
361
+
362
+ n_layers = model_config.num_hidden_layers if hasattr(model_config, "num_hidden_layers") else model_config.num_layers
363
+ d_model = model_config.hidden_size if hasattr(model_config, "hidden_size") else model_config.d_model
364
+
365
+ if hasattr(model_config, "num_experts_per_tok"):
366
+ n_experts_per_tok = model_config.num_experts_per_tok
367
+ elif hasattr(model_config, "num_selected_experts"):
368
+ n_experts_per_tok = model_config.num_selected_experts
369
+ else:
370
+ n_experts_per_tok = 1
371
+
372
+ if hasattr(model_config, "ffn_dim"):
373
+ d_ff = model_config.ffn_dim
374
+ elif hasattr(model_config, "intermediate_size"):
375
+ d_ff = model_config.intermediate_size
376
+ elif hasattr(model_config, "d_ff"):
377
+ d_ff = model_config.d_ff
378
+ else:
379
+ raise ValueError("Unknown ffn dim model configuration")
380
+
381
+ if hasattr(model_config, "num_local_experts"):
382
+ num_experts = model_config.num_local_experts
383
+ elif hasattr(model_config, "num_experts"):
384
+ num_experts = model_config.num_experts
385
+ else:
386
+ num_experts = 1
387
+
388
+ ffn_params = n_layers * d_ff * 2 * d_model
389
+
390
+ shared_params = model_size_param * 1e9 - num_experts * ffn_params
391
+
392
+ model_size = shared_params + n_experts_per_tok * ffn_params
393
+
394
+ per_token_kv_size = 2 * n_layers * d_model * precision_bytes
395
+
396
+ peak_bw_single = get_peak_bw(get_gpu_details())
397
+ peak_bw = peak_bw_single * get_gpu_number()
398
+
399
+ kv_size = (output_length - 1) * per_token_kv_size / 1e9
400
 
401
  end_to_end_time = (end - start) / batch_size
402
  prefilling_time = stop_watch.prefilling_time / batch_size
403
  decoding_time = stop_watch.decoding_time / batch_size
404
  token_per_sec = output_length / decoding_time
405
+ ach_mem_bw = (model_size / 1e9 + kv_size) * token_per_sec
406
+
407
+ flops_per_token = 2 * model_size + 2 * n_layers * context_length * d_model
408
+ peak_flops_single = get_peak_flops(get_gpu_details(), self.precision)
409
+ peak_flops = peak_flops_single * get_gpu_number()
410
+
411
+ ## TODO only support llama-type decoder only models and moe models of switch transformer and mixtrial
412
+ mfu = token_per_sec * flops_per_token / peak_flops
413
+ mbu = ach_mem_bw / peak_bw
414
+
415
+ # print(f"mfu: {mfu}, mbu: {mbu}")
416
+
417
+ return res, end_to_end_time, prefilling_time, token_per_sec, mfu, mbu
418
 
419
  def generate_until(
420
  self, requests: List[Instance], disable_tqdm: bool = False
 
529
  kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
530
 
531
  # perform batched generation
532
+ cont, end_to_end_time, prefilling_time, token_per_sec, mfu, mbu = self._model_generate(
533
  context=context_enc,
534
  attention_mask=attn_masks,
535
  stop=until,
 
544
  cont_toks = cont_toks[context_enc.shape[1] :]
545
 
546
  s = self.tok_decode(cont_toks)
547
+
548
+ # print(s)
549
 
550
  # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
551
  if not is_gsm8k:
 
555
  # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
556
  s = s.split(term)[0]
557
 
558
+ res.append((s, end_to_end_time, prefilling_time, token_per_sec, mfu, mbu))
559
 
560
  self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
561
  pbar.update(1)
src/backend/run_eval_suite.py CHANGED
@@ -17,12 +17,16 @@ def process_results_decorator(func):
17
  end_to_end_time = sum([r[1] for r in results]) / len(results)
18
  prefilling_time = sum([r[2] for r in results]) / len(results)
19
  decoding_throughput = sum([r[3] for r in results]) / len(results)
 
 
20
  # print(f"end_to_end_time: {end_to_end_time}, prefilling_time: {prefilling_time}, decoding_throughput: {decoding_throughput}")
21
 
22
  result_dict = func(self, doc, processed_results, *args, **kwargs)
23
  result_dict["end_to_end_time"] = end_to_end_time
24
  result_dict["prefilling_time"] = prefilling_time
25
  result_dict["decoding_throughput"] = decoding_throughput
 
 
26
  return result_dict
27
  return wrapper
28
  ConfigurableTask.process_results = process_results_decorator(orig_process_results)
@@ -33,6 +37,8 @@ def aggregation_decorator(func):
33
  aggregation_list["end_to_end_time"] = mean
34
  aggregation_list["prefilling_time"] = mean
35
  aggregation_list["decoding_throughput"] = mean
 
 
36
  return aggregation_list
37
  return wrapper
38
  ConfigurableTask.aggregation = aggregation_decorator(orig_aggregation)
@@ -43,6 +49,8 @@ def higher_is_better_decorator(func):
43
  higher_is_better_dict["end_to_end_time"] = False
44
  higher_is_better_dict["prefilling_time"] = False
45
  higher_is_better_dict["decoding_throughput"] = True
 
 
46
  return higher_is_better_dict
47
  return wrapper
48
  ConfigurableTask.higher_is_better = higher_is_better_decorator(orig_higher_is_better)
 
17
  end_to_end_time = sum([r[1] for r in results]) / len(results)
18
  prefilling_time = sum([r[2] for r in results]) / len(results)
19
  decoding_throughput = sum([r[3] for r in results]) / len(results)
20
+ mfu = sum([r[4] for r in results]) / len(results)
21
+ mbu = sum([r[5] for r in results]) / len(results)
22
  # print(f"end_to_end_time: {end_to_end_time}, prefilling_time: {prefilling_time}, decoding_throughput: {decoding_throughput}")
23
 
24
  result_dict = func(self, doc, processed_results, *args, **kwargs)
25
  result_dict["end_to_end_time"] = end_to_end_time
26
  result_dict["prefilling_time"] = prefilling_time
27
  result_dict["decoding_throughput"] = decoding_throughput
28
+ result_dict["mfu"] = mfu * 100
29
+ result_dict["mbu"] = mbu * 100
30
  return result_dict
31
  return wrapper
32
  ConfigurableTask.process_results = process_results_decorator(orig_process_results)
 
37
  aggregation_list["end_to_end_time"] = mean
38
  aggregation_list["prefilling_time"] = mean
39
  aggregation_list["decoding_throughput"] = mean
40
+ aggregation_list["mfu"] = mean
41
+ aggregation_list["mbu"] = mean
42
  return aggregation_list
43
  return wrapper
44
  ConfigurableTask.aggregation = aggregation_decorator(orig_aggregation)
 
49
  higher_is_better_dict["end_to_end_time"] = False
50
  higher_is_better_dict["prefilling_time"] = False
51
  higher_is_better_dict["decoding_throughput"] = True
52
+ higher_is_better_dict["mfu"] = True
53
+ higher_is_better_dict["mbu"] = True
54
  return higher_is_better_dict
55
  return wrapper
56
  ConfigurableTask.higher_is_better = higher_is_better_decorator(orig_higher_is_better)
src/display/utils.py CHANGED
@@ -18,12 +18,16 @@ GPU_Power = 'Power(W)'
18
  GPU_Mem = 'Mem(G)'
19
  GPU_Name = "GPU"
20
  GPU_Util = 'Util(%)'
 
 
21
  BATCH_SIZE = 'bs'
22
  PRECISION = "Precision"
23
  system_metrics_to_name_map = {
24
  "end_to_end_time": f"{E2Es}",
25
  "prefilling_time": f"{PREs}",
26
  "decoding_throughput": f"{TS}",
 
 
27
  }
28
 
29
  gpu_metrics_to_name_map = {
 
18
  GPU_Mem = 'Mem(G)'
19
  GPU_Name = "GPU"
20
  GPU_Util = 'Util(%)'
21
+ MFU = 'MFU(%)'
22
+ MBU = 'MBU(%)'
23
  BATCH_SIZE = 'bs'
24
  PRECISION = "Precision"
25
  system_metrics_to_name_map = {
26
  "end_to_end_time": f"{E2Es}",
27
  "prefilling_time": f"{PREs}",
28
  "decoding_throughput": f"{TS}",
29
+ "mfu": f"{MFU}",
30
+ "mbu": f"{MBU}"
31
  }
32
 
33
  gpu_metrics_to_name_map = {
src/submission/check_validity.py CHANGED
@@ -74,7 +74,7 @@ def is_model_on_hub(
74
 
75
 
76
  def get_model_size(model_info: ModelInfo, precision: str):
77
- size_pattern = size_pattern = re.compile(r"(\d\.)?\d+(b|m)")
78
  try:
79
  model_size = round(model_info.safetensors["total"] / 1e9, 3)
80
  except (AttributeError, TypeError):
 
74
 
75
 
76
  def get_model_size(model_info: ModelInfo, precision: str):
77
+ size_pattern = re.compile(r"(\d\.)?\d+(b|m)")
78
  try:
79
  model_size = round(model_info.safetensors["total"] / 1e9, 3)
80
  except (AttributeError, TypeError):