from lm_eval import evaluator from lm_eval.tasks import TaskManager from lm_eval.api.metrics import mean from lm_eval.api.task import ConfigurableTask from src.backend.manage_requests import EvalRequest orig_process_results = ConfigurableTask.process_results orig_aggregation = ConfigurableTask.aggregation orig_higher_is_better = ConfigurableTask.higher_is_better def process_results_decorator(func): def wrapper(self, doc, results, *args, **kwargs): processed_results = [r[0] for r in results] end_to_end_time = sum([r[1] for r in results]) / len(results) prefilling_time = sum([r[2] for r in results]) / len(results) decoding_throughput = sum([r[3] for r in results]) / len(results) mfu = sum([r[4] for r in results]) / len(results) mbu = sum([r[5] for r in results]) / len(results) # print(f"end_to_end_time: {end_to_end_time}, prefilling_time: {prefilling_time}, decoding_throughput: {decoding_throughput}") result_dict = func(self, doc, processed_results, *args, **kwargs) result_dict["end_to_end_time"] = end_to_end_time result_dict["prefilling_time"] = prefilling_time result_dict["decoding_throughput"] = decoding_throughput result_dict["mfu"] = mfu result_dict["mbu"] = mbu return result_dict return wrapper ConfigurableTask.process_results = process_results_decorator(orig_process_results) def aggregation_decorator(func): def wrapper(self, *args, **kwargs): aggregation_list = func(self, *args, **kwargs) aggregation_list["end_to_end_time"] = mean aggregation_list["prefilling_time"] = mean aggregation_list["decoding_throughput"] = mean aggregation_list["mfu"] = mean aggregation_list["mbu"] = mean return aggregation_list return wrapper ConfigurableTask.aggregation = aggregation_decorator(orig_aggregation) def higher_is_better_decorator(func): def wrapper(self, *args, **kwargs): higher_is_better_dict = func(self, *args, **kwargs) higher_is_better_dict["end_to_end_time"] = False higher_is_better_dict["prefilling_time"] = False higher_is_better_dict["decoding_throughput"] = True higher_is_better_dict["mfu"] = True higher_is_better_dict["mbu"] = True return higher_is_better_dict return wrapper ConfigurableTask.higher_is_better = higher_is_better_decorator(orig_higher_is_better) # from src.backend.tasks.xsum.task import XSum # from src.backend.tasks.xsum.task_v2 import XSumv2 # from src.backend.tasks.cnndm.task import CNNDM # from src.backend.tasks.cnndm.task_v2 import CNNDMv2 from src.backend.tasks.selfcheckgpt.task import SelfCheckGPT from src.backend.huggingface_generate_until import HFLMwithChatTemplate from src.backend.moe_infinity import MoEHFLM def run_evaluation( eval_request: EvalRequest, task_names, num_fewshot, batch_size, device, use_cache=None, limit=None, max_nb_samples=100, ) -> dict: if limit: print("WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.") # include_task_folder("src/backend/tasks/") # initialize_tasks('INFO') print(f"Allocating task manager for: {task_names}") task_manager = TaskManager(include_path="./src/backend/tasks/") # task_manager.initialize_tasks('INFO') print(f"Considered Tasks: {task_names}") # print(f"Allowed Tasks: {tasks.ALL_TASKS}") # task_names = utils.pattern_match(task_names, tasks.ALL_TASKS) print(f"Selected Tasks: {task_names}") print(f"Eval Request: {eval_request}") print( f"Num Fewshot: {num_fewshot}, Batch Size: {batch_size}, Device: {device}, Use Cache: {use_cache}, Limit: {limit}" ) # hf-chat is implemented to use apply_chat_template results = evaluator.simple_evaluate( model=eval_request.inference_framework, # "hf-chat", "moe-infinity" model_args=eval_request.get_model_args(), tasks=task_names, num_fewshot=num_fewshot, batch_size=batch_size, max_batch_size=8, device=device, use_cache=use_cache, limit=limit, write_out=True, task_manager=task_manager, verbosity="WARNING", ) results["config"]["model_dtype"] = eval_request.precision results["config"]["model_name"] = eval_request.model results["config"]["model_sha"] = eval_request.revision results["config"]["inference_framework"] = eval_request.inference_framework if max_nb_samples is not None: if "samples" in results: samples = results["samples"] for task_name in samples.keys(): if len(samples[task_name]) > max_nb_samples: results["samples"][task_name] = results["samples"][task_name][:max_nb_samples] # print(evaluator.make_table(results)) return results