''' This file is part of Open-MoE-LLM-Leaderboard and is modified based on work under the Apache 2.0 License from the arena-hard project. (https://github.com/lm-sys/arena-hard) Original Copyright (c) 2024 Tianle Li*, Wei-Lin Chiang*, Evan Frick, Lisa Dunlap, Banghua Zhu, Joseph E. Gonzalez, Ion Stoica See the NOTICE file distributed with this work for additional information regarding copyright ownership. ''' import pandas as pd from tqdm import tqdm import numpy as np from sklearn.linear_model import LogisticRegression import math from collections import defaultdict from tqdm import tqdm from src.backend.tasks.arena_hard.arena_utils import ( chat_completion_openai, load_questions, load_model_answers, get_endpoint, make_config, ) def get_score(judgment, pattern, pairwise=True): matches = pattern.findall(judgment) matches = [m for m in matches if m != ""] if len(set(matches)) == 0: return None, True elif len(set(matches)) == 1: if pairwise: return matches[0].strip("\n"), False return int(matches[0]) else: return None, False # get answer from model def get_answer(model, conv, temperature, max_tokens, endpoint_dict=None): api_dict = get_endpoint(endpoint_dict["endpoints"]) # if endpoint_dict["api_type"] == "anthropic": # output = chat_completion_anthropic(model, conv, temperature, max_tokens) # elif endpoint_dict["api_type"] == "azure": # output = chat_completion_openai_azure(model, conv, temperature, max_tokens, api_dict) output = chat_completion_openai(model, conv, temperature, max_tokens, api_dict) return output def judgment(**args): question = args["question"] answer = args["answer"] reference = args["reference"] baseline = args["baseline_answer"] configs = args["configs"] # output_file = args["output_file"] model = configs["judge_model"] num_games = 2 if configs["pairwise"] else 1 # output = { # "question_id":question["question_id"], # "judge": model, # "model": "custom_model", # "games":[] # } output = [question["question_id"]] for game in range(num_games): conv = [{"role": "system", "content": configs["system_prompt"]}] for template in configs["prompt_template"]: prompt_args = {} prompt_args[f"question_{1}"] = question["content"] base = 1 if baseline: if game % 2 == 1: # swap position temp = baseline baseline = answer answer = temp if game == 0: for i, turn in enumerate(baseline["choices"][0]["turns"]): prompt_args[f"answer_{i+1}"] = turn["content"] base += 1 if game == 1: prompt_args[f"answer_{1}"] = baseline base += 1 if answer: prompt_args[f"answer_{base}"] = answer if reference: for j, ref_answer in enumerate(reference): for i, turn in enumerate(ref_answer["choices"][0]["turns"]): prompt_args[f"ref_answer_{i+j+1}"] = turn["content"] user_prompt = template.format(**prompt_args) conv.append({"role": "user", "content": user_prompt}) judgment = "" for _ in range(2): new_judgment = get_answer( model, conv, configs["temperature"], configs["max_tokens"], args["endpoint_dict"], ) judgment += ("\n" + new_judgment) score, try_again = get_score(judgment, args["regex_pattern"]) conv.append({"role": "assistant", "content": new_judgment}) if not try_again: break conv.append({"role": "user", "content": "continue your judgment and finish by outputting a final verdict label"}) print("Finish judgment!!!") # result = { # "user_prompt": conv[1]["content"], # "judgment": judgment, # "score":score # } output.append(score) return output def get_battles_from_scores(score_list, first_game_only=False, WEIGHT=3): arena_hard_battles = pd.DataFrame() print("Turning score list into battles...") for scores in tqdm(score_list): question_id, score1, score2 = scores # Process game 1 output = {"question_id": question_id, "model_a": "gpt-4-0314", "model_b": f"custom_model"} # Unique identifier for model weight = 1 if score1 == "A=B": output["winner"] = "tie" elif score1 == "A>B": output["winner"] = "model_a" elif score1 == "A>>B": output["winner"] = "model_a" weight = WEIGHT elif score1 == "B>A": output["winner"] = "model_b" elif score1 == "B>>A": output["winner"] = "model_b" weight = WEIGHT else: weight = 0 if weight: arena_hard_battles = pd.concat([arena_hard_battles, pd.DataFrame([output] * weight)]) if not first_game_only: # Process game 2 output = {"question_id": question_id, "model_a": "gpt-4-0314", "model_b": f"custom_model"} # Unique identifier for model weight = 1 if score2 == "A=B": output["winner"] = "tie" elif score2 == "A>B": output["winner"] = "model_b" elif score2 == "A>>B": output["winner"] = "model_b" weight = WEIGHT elif score2 == "B>A": output["winner"] = "model_a" elif score2 == "B>>A": output["winner"] = "model_a" weight = WEIGHT else: weight = 0 if weight: arena_hard_battles = pd.concat([arena_hard_battles, pd.DataFrame([output] * weight)]) arena_hard_battles.to_json("./arena_hard_battles.jsonl", lines=True, orient="records") return arena_hard_battles def compute_mle_elo(df, SCALE=400, BASE=10, INIT_RATING=1000): models = pd.concat([df["model_a"], df["model_b"]]).unique() models = pd.Series(np.arange(len(models)), index=models) LOW_RATING = 100 # duplicate battles df = pd.concat([df, df], ignore_index=True) p = len(models.index) n = df.shape[0] X = np.zeros([n, p]) X[np.arange(n), models[df["model_a"]]] = +math.log(BASE) X[np.arange(n), models[df["model_b"]]] = -math.log(BASE) # one A win => two A win Y = np.zeros(n) Y[df["winner"] == "model_a"] = 1.0 # one tie => one A win + one B win # find tie + tie (both bad) index tie_idx = (df["winner"] == "tie") | (df["winner"] == "tie (bothbad)") tie_idx[len(tie_idx)//2:] = False Y[tie_idx] = 1.0 if len(np.unique(Y)) == 1: # If there's only one class in the data, assign default ratings elo_scores = np.full(p, LOW_RATING) elo_scores[models["gpt-4-0314"]] = INIT_RATING else: lr = LogisticRegression(fit_intercept=False, penalty=None, tol=1e-8) lr.fit(X,Y) elo_scores = SCALE * lr.coef_[0] + INIT_RATING # set anchor as gpt-4-0314 = 1000 if "gpt-4-0314" in models.index: elo_scores += 1000 - elo_scores[models["gpt-4-0314"]] return pd.Series(elo_scores, index = models.index).sort_values(ascending=False) def predict_win_rate(elo_ratings, SCALE=400, BASE=10, INIT_RATING=1000): names = sorted(list(elo_ratings.keys())) wins = defaultdict(lambda: defaultdict(lambda: 0)) for a in names: for b in names: ea = 1 / (1 + BASE ** ((elo_ratings[b] - elo_ratings[a]) / SCALE)) wins[a][b] = ea wins[b][a] = 1 - ea data = { a: [wins[a][b] if a != b else np.NAN for b in names] for a in names } df = pd.DataFrame(data, index=names) df.index.name = "model_a" df.columns.name = "model_b" return df.T def get_win_rate_column(df, column, baseline="gpt-4-0314"): to_dict = df[["model", column]].set_index("model").to_dict()[column] win_rate_table = predict_win_rate(to_dict) return win_rate_table[baseline].fillna(0.5).apply(lambda x: round(x * 100, 2))