Spaces:
Restarting
on
CPU Upgrade
Restarting
on
CPU Upgrade
disable unused code
Browse files- app.py +1 -1
- main_backend.py +56 -55
app.py
CHANGED
@@ -34,7 +34,7 @@ from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
|
34 |
from src.submission.submit import add_new_eval
|
35 |
|
36 |
|
37 |
-
subprocess.run(["python", "scripts/fix_harness_import.py"])
|
38 |
|
39 |
def restart_space():
|
40 |
API.restart_space(repo_id=REPO_ID)
|
|
|
34 |
from src.submission.submit import add_new_eval
|
35 |
|
36 |
|
37 |
+
# subprocess.run(["python", "scripts/fix_harness_import.py"])
|
38 |
|
39 |
def restart_space():
|
40 |
API.restart_space(repo_id=REPO_ID)
|
main_backend.py
CHANGED
@@ -5,9 +5,9 @@ from huggingface_hub import snapshot_download
|
|
5 |
|
6 |
logging.getLogger("openai").setLevel(logging.WARNING)
|
7 |
|
8 |
-
from src.backend.run_eval_suite import run_evaluation
|
9 |
-
from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request
|
10 |
-
from src.backend.sort_queue import sort_models_by_priority
|
11 |
|
12 |
from src.envs import QUEUE_REPO, EVAL_REQUESTS_PATH_BACKEND, RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND, DEVICE, API, LIMIT, TOKEN
|
13 |
from src.about import Tasks, NUM_FEWSHOT
|
@@ -21,58 +21,59 @@ RUNNING_STATUS = "RUNNING"
|
|
21 |
FINISHED_STATUS = "FINISHED"
|
22 |
FAILED_STATUS = "FAILED"
|
23 |
|
|
|
24 |
snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN)
|
25 |
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN)
|
26 |
|
27 |
-
def run_auto_eval():
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
if __name__ == "__main__":
|
78 |
-
|
|
|
5 |
|
6 |
logging.getLogger("openai").setLevel(logging.WARNING)
|
7 |
|
8 |
+
# from src.backend.run_eval_suite import run_evaluation
|
9 |
+
# from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request
|
10 |
+
# from src.backend.sort_queue import sort_models_by_priority
|
11 |
|
12 |
from src.envs import QUEUE_REPO, EVAL_REQUESTS_PATH_BACKEND, RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND, DEVICE, API, LIMIT, TOKEN
|
13 |
from src.about import Tasks, NUM_FEWSHOT
|
|
|
21 |
FINISHED_STATUS = "FINISHED"
|
22 |
FAILED_STATUS = "FAILED"
|
23 |
|
24 |
+
print('Downloading results and requests.')
|
25 |
snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN)
|
26 |
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN)
|
27 |
|
28 |
+
# def run_auto_eval():
|
29 |
+
# current_pending_status = [PENDING_STATUS]
|
30 |
+
#
|
31 |
+
# # pull the eval dataset from the hub and parse any eval requests
|
32 |
+
# # check completed evals and set them to finished
|
33 |
+
# check_completed_evals(
|
34 |
+
# api=API,
|
35 |
+
# checked_status=RUNNING_STATUS,
|
36 |
+
# completed_status=FINISHED_STATUS,
|
37 |
+
# failed_status=FAILED_STATUS,
|
38 |
+
# hf_repo=QUEUE_REPO,
|
39 |
+
# local_dir=EVAL_REQUESTS_PATH_BACKEND,
|
40 |
+
# hf_repo_results=RESULTS_REPO,
|
41 |
+
# local_dir_results=EVAL_RESULTS_PATH_BACKEND
|
42 |
+
# )
|
43 |
+
#
|
44 |
+
# # Get all eval request that are PENDING, if you want to run other evals, change this parameter
|
45 |
+
# eval_requests = get_eval_requests(job_status=current_pending_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
|
46 |
+
# # Sort the evals by priority (first submitted first run)
|
47 |
+
# eval_requests = sort_models_by_priority(api=API, models=eval_requests)
|
48 |
+
#
|
49 |
+
# print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
|
50 |
+
#
|
51 |
+
# if len(eval_requests) == 0:
|
52 |
+
# return
|
53 |
+
#
|
54 |
+
# eval_request = eval_requests[0]
|
55 |
+
# pp.pprint(eval_request)
|
56 |
+
#
|
57 |
+
# set_eval_request(
|
58 |
+
# api=API,
|
59 |
+
# eval_request=eval_request,
|
60 |
+
# set_to_status=RUNNING_STATUS,
|
61 |
+
# hf_repo=QUEUE_REPO,
|
62 |
+
# local_dir=EVAL_REQUESTS_PATH_BACKEND,
|
63 |
+
# )
|
64 |
+
#
|
65 |
+
# run_evaluation(
|
66 |
+
# eval_request=eval_request,
|
67 |
+
# task_names=TASKS_HARNESS,
|
68 |
+
# num_fewshot=NUM_FEWSHOT,
|
69 |
+
# local_dir=EVAL_RESULTS_PATH_BACKEND,
|
70 |
+
# results_repo=RESULTS_REPO,
|
71 |
+
# batch_size=1,
|
72 |
+
# device=DEVICE,
|
73 |
+
# no_cache=True,
|
74 |
+
# limit=LIMIT
|
75 |
+
# )
|
76 |
+
#
|
77 |
+
#
|
78 |
+
# if __name__ == "__main__":
|
79 |
+
# run_auto_eval()
|