Spaces:
Runtime error
Runtime error
using gradio instead of streamlit
Browse files- app.py +37 -31
- requirements.txt +1 -1
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, pipeline
|
@@ -19,44 +19,28 @@ login(token=hf_token)
|
|
19 |
try:
|
20 |
image_to_text_pipeline = pipeline("image-to-text", model="google/paligemma-3b-mix-448", device=0 if torch.cuda.is_available() else -1)
|
21 |
except Exception as e:
|
22 |
-
|
23 |
-
st.stop()
|
24 |
|
25 |
# Load ColPali model with Hugging Face token
|
26 |
try:
|
27 |
model_colpali = ColPali.from_pretrained("vidore/colpali-v1.2", torch_dtype=torch.bfloat16).to(device)
|
28 |
processor_colpali = ColPaliProcessor.from_pretrained("google/paligemma-3b-mix-448")
|
29 |
except Exception as e:
|
30 |
-
|
31 |
-
st.stop()
|
32 |
|
33 |
# Load Qwen model
|
34 |
try:
|
35 |
model_qwen = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct").to(device)
|
36 |
processor_qwen = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
37 |
except Exception as e:
|
38 |
-
|
39 |
-
st.stop()
|
40 |
|
41 |
-
#
|
42 |
-
|
43 |
-
st.write("Upload an image containing text in both Hindi and English for OCR processing and keyword search.")
|
44 |
-
|
45 |
-
# File uploader for the image
|
46 |
-
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
47 |
-
|
48 |
-
if uploaded_file is not None:
|
49 |
try:
|
50 |
-
image = Image.open(uploaded_file)
|
51 |
-
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
52 |
-
st.write("")
|
53 |
-
|
54 |
# Use the image-to-text pipeline to extract text from the image
|
55 |
output_text_img_to_text = image_to_text_pipeline(image)
|
56 |
|
57 |
-
st.write("Extracted Text from Image:")
|
58 |
-
st.write(output_text_img_to_text)
|
59 |
-
|
60 |
# Prepare input for Qwen model for image description
|
61 |
conversation = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Describe this image."}]}]
|
62 |
text_prompt = processor_qwen.apply_chat_template(conversation, add_generation_prompt=True)
|
@@ -68,18 +52,40 @@ if uploaded_file is not None:
|
|
68 |
generated_ids_qwen = [output_ids_qwen[len(input_ids):] for input_ids, output_ids_qwen in zip(inputs_qwen.input_ids, output_ids_qwen)]
|
69 |
output_text_qwen = processor_qwen.batch_decode(generated_ids_qwen, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
70 |
|
71 |
-
|
72 |
-
st.write(output_text_qwen)
|
73 |
|
74 |
# Keyword search in the extracted text
|
75 |
-
|
76 |
if keyword:
|
77 |
-
if keyword.lower() in
|
78 |
-
|
79 |
else:
|
80 |
-
|
81 |
-
except Exception as e:
|
82 |
-
st.error(f"An error occurred: {e}")
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
if __name__ == "__main__":
|
85 |
-
|
|
|
1 |
+
import gradio as gr
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, pipeline
|
|
|
19 |
try:
|
20 |
image_to_text_pipeline = pipeline("image-to-text", model="google/paligemma-3b-mix-448", device=0 if torch.cuda.is_available() else -1)
|
21 |
except Exception as e:
|
22 |
+
raise Exception(f"Error loading image-to-text model: {e}")
|
|
|
23 |
|
24 |
# Load ColPali model with Hugging Face token
|
25 |
try:
|
26 |
model_colpali = ColPali.from_pretrained("vidore/colpali-v1.2", torch_dtype=torch.bfloat16).to(device)
|
27 |
processor_colpali = ColPaliProcessor.from_pretrained("google/paligemma-3b-mix-448")
|
28 |
except Exception as e:
|
29 |
+
raise Exception(f"Error loading ColPali model or processor: {e}")
|
|
|
30 |
|
31 |
# Load Qwen model
|
32 |
try:
|
33 |
model_qwen = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct").to(device)
|
34 |
processor_qwen = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
35 |
except Exception as e:
|
36 |
+
raise Exception(f"Error loading Qwen model or processor: {e}")
|
|
|
37 |
|
38 |
+
# Function to process the image and extract text
|
39 |
+
def process_image(image, keyword):
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
try:
|
|
|
|
|
|
|
|
|
41 |
# Use the image-to-text pipeline to extract text from the image
|
42 |
output_text_img_to_text = image_to_text_pipeline(image)
|
43 |
|
|
|
|
|
|
|
44 |
# Prepare input for Qwen model for image description
|
45 |
conversation = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Describe this image."}]}]
|
46 |
text_prompt = processor_qwen.apply_chat_template(conversation, add_generation_prompt=True)
|
|
|
52 |
generated_ids_qwen = [output_ids_qwen[len(input_ids):] for input_ids, output_ids_qwen in zip(inputs_qwen.input_ids, output_ids_qwen)]
|
53 |
output_text_qwen = processor_qwen.batch_decode(generated_ids_qwen, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
54 |
|
55 |
+
extracted_text = output_text_img_to_text[0]['generated_text']
|
|
|
56 |
|
57 |
# Keyword search in the extracted text
|
58 |
+
keyword_found = ""
|
59 |
if keyword:
|
60 |
+
if keyword.lower() in extracted_text.lower():
|
61 |
+
keyword_found = f"Keyword '{keyword}' found in the text."
|
62 |
else:
|
63 |
+
keyword_found = f"Keyword '{keyword}' not found in the text."
|
|
|
|
|
64 |
|
65 |
+
return extracted_text, output_text_qwen[0], keyword_found
|
66 |
+
except Exception as e:
|
67 |
+
return str(e), "", ""
|
68 |
+
|
69 |
+
# Define Gradio Interface
|
70 |
+
title = "OCR and Document Search Web Application"
|
71 |
+
description = "Upload an image containing text in both Hindi and English for OCR processing and keyword search."
|
72 |
+
|
73 |
+
# Gradio interface for input and output
|
74 |
+
image_input = gr.inputs.Image(type="pil")
|
75 |
+
keyword_input = gr.inputs.Textbox(label="Enter a keyword to search in the extracted text (Optional)")
|
76 |
+
output_textbox = gr.outputs.Textbox(label="Extracted Text")
|
77 |
+
output_description = gr.outputs.Textbox(label="Qwen Model Description")
|
78 |
+
output_keyword_search = gr.outputs.Textbox(label="Keyword Search Result")
|
79 |
+
|
80 |
+
# Set up Gradio interface layout
|
81 |
+
interface = gr.Interface(
|
82 |
+
fn=process_image, # Function to call when button is pressed
|
83 |
+
inputs=[image_input, keyword_input], # Input types (image and keyword)
|
84 |
+
outputs=[output_textbox, output_description, output_keyword_search], # Outputs (text boxes for results)
|
85 |
+
title=title,
|
86 |
+
description=description
|
87 |
+
)
|
88 |
+
|
89 |
+
# Launch the Gradio app
|
90 |
if __name__ == "__main__":
|
91 |
+
interface.launch(share=True)
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
Pillow
|
3 |
torch
|
4 |
transformers
|
|
|
1 |
+
gradio
|
2 |
Pillow
|
3 |
torch
|
4 |
transformers
|