import gradio as gr from PIL import Image import torch from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, pipeline from colpali_engine.models import ColPali, ColPaliProcessor from huggingface_hub import login import os # Set device for computation device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Get Hugging Face token from environment variables hf_token = os.getenv('HF_TOKEN') # Log in to Hugging Face Hub (this will authenticate globally) login(token=hf_token) # Use pipeline for image-to-text task try: image_to_text_pipeline = pipeline("image-to-text", model="google/paligemma-3b-mix-448", device=0 if torch.cuda.is_available() else -1) except Exception as e: raise Exception(f"Error loading image-to-text model: {e}") # Load ColPali model with Hugging Face token try: model_colpali = ColPali.from_pretrained("vidore/colpali-v1.2", torch_dtype=torch.bfloat16).to(device) processor_colpali = ColPaliProcessor.from_pretrained("google/paligemma-3b-mix-448") except Exception as e: raise Exception(f"Error loading ColPali model or processor: {e}") # Load Qwen model try: model_qwen = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct").to(device) processor_qwen = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") except Exception as e: raise Exception(f"Error loading Qwen model or processor: {e}") # Function to process the image and extract text def process_image(image, keyword): try: # Debugging: Check the type of the input image print(f"Received image of type: {type(image)}") # Use the image-to-text pipeline to extract text from the image output_text_img_to_text = image_to_text_pipeline(image) # Debugging: Check the output of the image-to-text model print(f"Output from image-to-text pipeline: {output_text_img_to_text}") # Prepare input for Qwen model for image description conversation = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Describe this image."}]}] text_prompt = processor_qwen.apply_chat_template(conversation, add_generation_prompt=True) inputs_qwen = processor_qwen(text=[text_prompt], images=[image], padding=True, return_tensors="pt").to(device) # Generate response with Qwen model with torch.no_grad(): output_ids_qwen = model_qwen.generate(**inputs_qwen, max_new_tokens=128) generated_ids_qwen = [output_ids_qwen[len(input_ids):] for input_ids, output_ids_qwen in zip(inputs_qwen.input_ids, output_ids_qwen)] output_text_qwen = processor_qwen.batch_decode(generated_ids_qwen, skip_special_tokens=True, clean_up_tokenization_spaces=True) # Debugging: Check the output from the Qwen model print(f"Output from Qwen model: {output_text_qwen}") extracted_text = output_text_img_to_text[0]['generated_text'] # Keyword search in the extracted text keyword_found = "" if keyword: if keyword.lower() in extracted_text.lower(): keyword_found = f"Keyword '{keyword}' found in the text." else: keyword_found = f"Keyword '{keyword}' not found in the text." return extracted_text, output_text_qwen[0], keyword_found except Exception as e: return str(e), "", "" # Define Gradio Interface title = "OCR and Document Search Web Application" description = "Upload an image containing text in both Hindi and English for OCR processing and keyword search." # Gradio interface for input and output image_input = gr.inputs.Image(type="pil") keyword_input = gr.inputs.Textbox(label="Enter a keyword to search in the extracted text (Optional)") output_textbox = gr.outputs.Textbox(label="Extracted Text") output_description = gr.outputs.Textbox(label="Qwen Model Description") output_keyword_search = gr.outputs.Textbox(label="Keyword Search Result") # Set up Gradio interface layout interface = gr.Interface( fn=process_image, # Function to call when button is pressed inputs=[image_input, keyword_input], # Input types (image and keyword) outputs=[output_textbox, output_description, output_keyword_search], # Outputs (text boxes for results) title=title, description=description ) # Launch the Gradio app if __name__ == "__main__": interface.launch(share=True)