Upload chula_gino_parkinson.py
Browse files- chula_gino_parkinson.py +881 -0
chula_gino_parkinson.py
ADDED
@@ -0,0 +1,881 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""CHULA Gino_Parkinson.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1XPgGZILiBbDji5G0dHoFV7OQaUwGM3HJ
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install SoundFile transformers scikit-learn
|
11 |
+
|
12 |
+
from google.colab import drive
|
13 |
+
drive.mount('/content/drive')
|
14 |
+
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
import os
|
19 |
+
import soundfile as sf
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
import torch.nn.functional as F
|
23 |
+
from torch.utils.data import Dataset, DataLoader
|
24 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, Wav2Vec2ForSequenceClassification
|
25 |
+
from sklearn.model_selection import train_test_split
|
26 |
+
import re
|
27 |
+
from collections import Counter
|
28 |
+
from sklearn.metrics import classification_report
|
29 |
+
|
30 |
+
# Custom Dataset class
|
31 |
+
class DysarthriaDataset(Dataset):
|
32 |
+
def __init__(self, data, labels, max_length=100000):
|
33 |
+
self.data = data
|
34 |
+
self.labels = labels
|
35 |
+
self.max_length = max_length
|
36 |
+
self.processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
37 |
+
|
38 |
+
def __len__(self):
|
39 |
+
return len(self.data)
|
40 |
+
|
41 |
+
def __getitem__(self, idx):
|
42 |
+
try:
|
43 |
+
wav_data, _ = sf.read(self.data[idx])
|
44 |
+
except:
|
45 |
+
print(f"Error opening file: {self.data[idx]}. Skipping...")
|
46 |
+
return self.__getitem__((idx + 1) % len(self.data))
|
47 |
+
inputs = self.processor(wav_data, sampling_rate=16000, return_tensors="pt", padding=True)
|
48 |
+
input_values = inputs.input_values.squeeze(0) # Squeeze the batch dimension
|
49 |
+
if self.max_length - input_values.shape[-1] > 0:
|
50 |
+
input_values = torch.cat([input_values, torch.zeros((self.max_length - input_values.shape[-1],))], dim=-1)
|
51 |
+
else:
|
52 |
+
input_values = input_values[:self.max_length]
|
53 |
+
|
54 |
+
# Remove unsqueezing the channel dimension
|
55 |
+
# input_values = input_values.unsqueeze(0)
|
56 |
+
|
57 |
+
# label = torch.zeros(32,dtype=torch.long)
|
58 |
+
# label[self.labels[idx]] = 1
|
59 |
+
|
60 |
+
### CHANGES: simply return the label as a single integer
|
61 |
+
return {"input_values": input_values}, self.labels[idx]
|
62 |
+
# return {"input_values": input_values, "audio_path": self.data[idx]}, self.labels[idx]
|
63 |
+
###
|
64 |
+
|
65 |
+
def train(model, dataloader, criterion, optimizer, device, loss_vals, epochs, current_epoch):
|
66 |
+
model.train()
|
67 |
+
running_loss = 0
|
68 |
+
|
69 |
+
for i, (inputs, labels) in enumerate(dataloader):
|
70 |
+
inputs = {key: value.squeeze().to(device) for key, value in inputs.items()}
|
71 |
+
labels = labels.to(device)
|
72 |
+
|
73 |
+
optimizer.zero_grad()
|
74 |
+
logits = model(**inputs).logits
|
75 |
+
loss = criterion(logits, labels)
|
76 |
+
loss.backward()
|
77 |
+
optimizer.step()
|
78 |
+
|
79 |
+
# append loss value to list
|
80 |
+
loss_vals.append(loss.item())
|
81 |
+
running_loss += loss.item()
|
82 |
+
|
83 |
+
if i % 10 == 0: # Update the plot every 10 iterations
|
84 |
+
plt.clf() # Clear the previous plot
|
85 |
+
plt.plot(loss_vals)
|
86 |
+
plt.xlim([0, len(dataloader)*epochs])
|
87 |
+
plt.ylim([0, max(loss_vals) + 2])
|
88 |
+
plt.xlabel('Training Iterations')
|
89 |
+
plt.ylabel('Loss')
|
90 |
+
plt.title(f"Training Loss at Epoch {current_epoch + 1}")
|
91 |
+
plt.pause(0.001) # Pause to update the plot
|
92 |
+
|
93 |
+
avg_loss = running_loss / len(dataloader)
|
94 |
+
print(f"Average Loss after Epoch {current_epoch + 1}: {avg_loss}\n")
|
95 |
+
return avg_loss
|
96 |
+
|
97 |
+
def predict(model, file_path, processor, device, max_length=100000): ### CHANGES: added max_length as an argument.
|
98 |
+
model.eval()
|
99 |
+
with torch.no_grad():
|
100 |
+
wav_data, _ = sf.read(file_path)
|
101 |
+
inputs = processor(wav_data, sampling_rate=16000, return_tensors="pt", padding=True)
|
102 |
+
# inputs = {key: value.squeeze().to(device) for key, value in inputs.items()}
|
103 |
+
|
104 |
+
### NEW CODES HERE
|
105 |
+
input_values = inputs.input_values.squeeze(0) # Squeeze the batch dimension
|
106 |
+
if max_length - input_values.shape[-1] > 0:
|
107 |
+
input_values = torch.cat([input_values, torch.zeros((max_length - input_values.shape[-1],))], dim=-1)
|
108 |
+
else:
|
109 |
+
input_values = input_values[:max_length]
|
110 |
+
input_values = input_values.unsqueeze(0).to(device)
|
111 |
+
inputs = {"input_values": input_values}
|
112 |
+
###
|
113 |
+
|
114 |
+
logits = model(**inputs).logits
|
115 |
+
# _, predicted = torch.max(logits, dim=0)
|
116 |
+
|
117 |
+
### NEW CODES HERE
|
118 |
+
# Remove the batch dimension.
|
119 |
+
logits = logits.squeeze()
|
120 |
+
predicted_class_id = torch.argmax(logits, dim=-1).item()
|
121 |
+
###
|
122 |
+
|
123 |
+
# return predicted.item()
|
124 |
+
return predicted_class_id
|
125 |
+
|
126 |
+
def evaluate(model, dataloader, criterion, device):
|
127 |
+
model.eval()
|
128 |
+
running_loss = 0
|
129 |
+
correct_predictions = 0
|
130 |
+
total_predictions = 0
|
131 |
+
wrong_files = []
|
132 |
+
all_labels = []
|
133 |
+
all_predictions = []
|
134 |
+
|
135 |
+
with torch.no_grad():
|
136 |
+
for inputs, labels in dataloader:
|
137 |
+
inputs = {key: value.squeeze().to(device) for key, value in inputs.items()}
|
138 |
+
labels = labels.to(device)
|
139 |
+
|
140 |
+
logits = model(**inputs).logits
|
141 |
+
loss = criterion(logits, labels)
|
142 |
+
running_loss += loss.item()
|
143 |
+
|
144 |
+
_, predicted = torch.max(logits, 1)
|
145 |
+
correct_predictions += (predicted == labels).sum().item()
|
146 |
+
total_predictions += labels.size(0)
|
147 |
+
|
148 |
+
wrong_idx = (predicted != labels).nonzero().squeeze().cpu().numpy()
|
149 |
+
if wrong_idx.ndim > 0:
|
150 |
+
for idx in wrong_idx:
|
151 |
+
wrong_files.append(dataloader.dataset.data[idx])
|
152 |
+
elif wrong_idx.size > 0:
|
153 |
+
wrong_files.append(dataloader.dataset.data[wrong_idx])
|
154 |
+
|
155 |
+
all_labels.extend(labels.cpu().numpy())
|
156 |
+
all_predictions.extend(predicted.cpu().numpy())
|
157 |
+
|
158 |
+
avg_loss = running_loss / len(dataloader)
|
159 |
+
accuracy = correct_predictions / total_predictions
|
160 |
+
|
161 |
+
return avg_loss, accuracy, wrong_files, np.array(all_labels), np.array(all_predictions)
|
162 |
+
|
163 |
+
def get_wav_files(base_path):
|
164 |
+
wav_files = []
|
165 |
+
for subject_folder in os.listdir(base_path):
|
166 |
+
subject_path = os.path.join(base_path, subject_folder)
|
167 |
+
if os.path.isdir(subject_path):
|
168 |
+
for wav_file in os.listdir(subject_path):
|
169 |
+
if wav_file.endswith('.wav'):
|
170 |
+
wav_files.append(os.path.join(subject_path, wav_file))
|
171 |
+
|
172 |
+
return wav_files
|
173 |
+
|
174 |
+
def get_torgo_data(dysarthria_path, non_dysarthria_path):
|
175 |
+
dysarthria_files = [os.path.join(dysarthria_path, f) for f in os.listdir(dysarthria_path) if f.endswith('.wav')]
|
176 |
+
non_dysarthria_files = [os.path.join(non_dysarthria_path, f) for f in os.listdir(non_dysarthria_path) if f.endswith('.wav')]
|
177 |
+
|
178 |
+
data = dysarthria_files + non_dysarthria_files
|
179 |
+
labels = [1] * len(dysarthria_files) + [0] * len(non_dysarthria_files)
|
180 |
+
|
181 |
+
train_data, test_data, train_labels, test_labels = train_test_split(data, labels, test_size=0.2, stratify=labels)
|
182 |
+
train_data, val_data, train_labels, val_labels = train_test_split(train_data, train_labels, test_size=0.25, stratify=train_labels) # 0.25 x 0.8 = 0.2
|
183 |
+
|
184 |
+
return train_data, val_data, test_data, train_labels, val_labels, test_labels
|
185 |
+
|
186 |
+
dysarthria_path = "/content/drive/MyDrive/RECORDINGS_ANALYSIS/SP_ANALYSIS"
|
187 |
+
non_dysarthria_path = "/content/drive/MyDrive/RECORDINGS_ANALYSIS/CT_ANALYSIS"
|
188 |
+
|
189 |
+
dysarthria_files = get_wav_files(dysarthria_path)
|
190 |
+
non_dysarthria_files = get_wav_files(non_dysarthria_path)
|
191 |
+
|
192 |
+
|
193 |
+
|
194 |
+
data = dysarthria_files + non_dysarthria_files
|
195 |
+
labels = [1] * len(dysarthria_files) + [0] * len(non_dysarthria_files)
|
196 |
+
|
197 |
+
train_data, test_data, train_labels, test_labels = train_test_split(data, labels, test_size=0.2, stratify=labels)
|
198 |
+
train_data, val_data, train_labels, val_labels = train_test_split(train_data, train_labels, test_size=0.25, stratify=train_labels) # 0.25 x 0.8 = 0.2
|
199 |
+
train_dataset = DysarthriaDataset(train_data, train_labels)
|
200 |
+
test_dataset = DysarthriaDataset(test_data, test_labels)
|
201 |
+
val_dataset = DysarthriaDataset(val_data, val_labels) # Create a validation dataset
|
202 |
+
|
203 |
+
train_loader = DataLoader(train_dataset, batch_size=16, drop_last=False)
|
204 |
+
test_loader = DataLoader(test_dataset, batch_size=16, drop_last=False)
|
205 |
+
validation_loader = DataLoader(val_dataset, batch_size=16, drop_last=False) # Use the validation dataset for the validation_loader
|
206 |
+
|
207 |
+
""" dysarthria_path = "/content/drive/MyDrive/torgo_data/dysarthria_male/training"
|
208 |
+
non_dysarthria_path = "/content/drive/MyDrive/torgo_data/non_dysarthria_male/training"
|
209 |
+
|
210 |
+
dysarthria_files = [os.path.join(dysarthria_path, f) for f in os.listdir(dysarthria_path) if f.endswith('.wav')]
|
211 |
+
non_dysarthria_files = [os.path.join(non_dysarthria_path, f) for f in os.listdir(non_dysarthria_path) if f.endswith('.wav')]
|
212 |
+
|
213 |
+
data = dysarthria_files + non_dysarthria_files
|
214 |
+
labels = [1] * len(dysarthria_files) + [0] * len(non_dysarthria_files)
|
215 |
+
|
216 |
+
train_data, test_data, train_labels, test_labels = train_test_split(data, labels, test_size=0.2)
|
217 |
+
|
218 |
+
train_dataset = DysarthriaDataset(train_data, train_labels)
|
219 |
+
test_dataset = DysarthriaDataset(test_data, test_labels)
|
220 |
+
|
221 |
+
train_loader = DataLoader(train_dataset, batch_size=8, drop_last=True)
|
222 |
+
test_loader = DataLoader(test_dataset, batch_size=8, drop_last=True)
|
223 |
+
validation_loader = DataLoader(test_dataset, batch_size=8, drop_last=True)
|
224 |
+
|
225 |
+
dysarthria_validation_path = "/content/drive/MyDrive/torgo_data/dysarthria_male/validation"
|
226 |
+
non_dysarthria_validation_path = "/content/drive/MyDrive/torgo_data/non_dysarthria_male/validation"
|
227 |
+
|
228 |
+
dysarthria_validation_files = [os.path.join(dysarthria_validation_path, f) for f in os.listdir(dysarthria_validation_path) if f.endswith('.wav')]
|
229 |
+
non_dysarthria_validation_files = [os.path.join(non_dysarthria_validation_path, f) for f in os.listdir(non_dysarthria_validation_path) if f.endswith('.wav')]
|
230 |
+
|
231 |
+
validation_data = dysarthria_validation_files + non_dysarthria_validation_files
|
232 |
+
validation_labels = [1] * len(dysarthria_validation_files) + [0] * len(non_dysarthria_validation_files)"""
|
233 |
+
|
234 |
+
|
235 |
+
|
236 |
+
|
237 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
238 |
+
|
239 |
+
|
240 |
+
|
241 |
+
|
242 |
+
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
# model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to(device)
|
251 |
+
# model.classifier = nn.Linear(model.config.hidden_size, 2).to(device)
|
252 |
+
|
253 |
+
### NEW CODES
|
254 |
+
# It seems like the classifier layer is excluded from the model's forward method (i.e., model(**inputs)).
|
255 |
+
# That's why the number of labels in the output was 32 instead of 2 even when you had already changed the classifier.
|
256 |
+
# Instead, huggingface offers the option for loading the Wav2Vec model with an adjustable classifier head on top (by setting num_labels).
|
257 |
+
|
258 |
+
model = Wav2Vec2ForSequenceClassification.from_pretrained("facebook/wav2vec2-base-960h", num_labels=2).to(device)
|
259 |
+
##
|
260 |
+
model_path = "/content/dysarthria_classifier1.pth"
|
261 |
+
if os.path.exists(model_path):
|
262 |
+
print(f"Loading saved model {model_path}")
|
263 |
+
model.load_state_dict(torch.load(model_path))
|
264 |
+
|
265 |
+
criterion = nn.CrossEntropyLoss()
|
266 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)
|
267 |
+
|
268 |
+
from torch.optim.lr_scheduler import StepLR
|
269 |
+
|
270 |
+
scheduler = StepLR(optimizer, step_size=5, gamma=0.1)
|
271 |
+
|
272 |
+
# dysarthria_validation_path = "/content/drive/MyDrive/RECORDINGS_ANALYSIS/SP_ANALYSIS/testing"
|
273 |
+
# non_dysarthria_validation_path = "/content/drive/MyDrive/RECORDINGS_ANALYSIS/CT_ANALYSIS/testing"
|
274 |
+
|
275 |
+
#dysarthria_validation_files = get_wav_files(dysarthria_validation_path)
|
276 |
+
# non_dysarthria_validation_files = get_wav_files(non_dysarthria_validation_path)
|
277 |
+
|
278 |
+
#validation_data = dysarthria_validation_files + non_dysarthria_validation_files
|
279 |
+
#validation_labels = [1] * len(dysarthria_validation_files) + [0] * len(non_dysarthria_validation_files)
|
280 |
+
|
281 |
+
epochs = 10
|
282 |
+
plt.ion()
|
283 |
+
fig, ax = plt.subplots()
|
284 |
+
x_vals = np.arange(len(train_loader)*epochs)
|
285 |
+
loss_vals = []
|
286 |
+
for epoch in range(epochs):
|
287 |
+
train_loss = train(model, train_loader, criterion, optimizer, device, loss_vals, epochs, epoch)
|
288 |
+
print(f"Epoch {epoch + 1}, Train Loss: {train_loss}")
|
289 |
+
|
290 |
+
val_loss, val_accuracy, wrong_files, true_labels, pred_labels = evaluate(model, validation_loader, criterion, device)
|
291 |
+
print(f"Epoch {epoch + 1}, Validation Loss: {val_loss}, Validation Accuracy: {val_accuracy:.2f}")
|
292 |
+
print("Misclassified Files")
|
293 |
+
for file_path in wrong_files:
|
294 |
+
print(file_path)
|
295 |
+
|
296 |
+
|
297 |
+
sentence_pattern = re.compile(r"_(\d+)\.wav$")
|
298 |
+
|
299 |
+
sentence_counts = Counter()
|
300 |
+
for file_path in wrong_files:
|
301 |
+
match = sentence_pattern.search(file_path)
|
302 |
+
if match:
|
303 |
+
sentence_number = int(match.group(1))
|
304 |
+
sentence_counts[sentence_number] += 1
|
305 |
+
|
306 |
+
total_wrong = len(wrong_files)
|
307 |
+
print("Total wrong files:", total_wrong)
|
308 |
+
print()
|
309 |
+
|
310 |
+
for sentence_number, count in sentence_counts.most_common():
|
311 |
+
percent = count / total_wrong * 100
|
312 |
+
print(f"Sentence {sentence_number}: {count} ({percent:.2f}%)")
|
313 |
+
scheduler.step()
|
314 |
+
print(classification_report(true_labels, pred_labels, target_names=['non_dysarthria', 'dysarthria']))
|
315 |
+
audio_file = "/content/drive/MyDrive/torgo_data/dysarthria_male/validation/M01_Session1_0005.wav"
|
316 |
+
predicted_label = predict(model, audio_file, train_dataset.processor, device)
|
317 |
+
print(f"Predicted label: {predicted_label}")
|
318 |
+
|
319 |
+
|
320 |
+
|
321 |
+
|
322 |
+
|
323 |
+
# Test on a specific audio file
|
324 |
+
##audio_file = "/content/drive/MyDrive/torgo_data/dysarthria_male/validation/M01_Session1_0005.wav"
|
325 |
+
##predicted_label = predict(model, audio_file, train_dataset.processor, device)
|
326 |
+
##print(f"Predicted label: {predicted_label}")
|
327 |
+
|
328 |
+
torch.save(model.state_dict(), "dysarthria_classifier1.pth")
|
329 |
+
print("Predicting...")
|
330 |
+
|
331 |
+
"""#audio aug"""
|
332 |
+
|
333 |
+
!pip install audiomentations
|
334 |
+
from audiomentations import Compose, PitchShift, TimeStretch
|
335 |
+
|
336 |
+
augmenter = Compose([
|
337 |
+
PitchShift(min_semitones=-2, max_semitones=2, p=0.1),
|
338 |
+
TimeStretch(min_rate=0.9, max_rate=1.1, p=0.1)
|
339 |
+
])
|
340 |
+
|
341 |
+
# from torch.optim.lr_scheduler import StepLR
|
342 |
+
|
343 |
+
# scheduler = StepLR(optimizer, step_size=2, gamma=0.5)
|
344 |
+
|
345 |
+
from transformers import get_linear_schedule_with_warmup
|
346 |
+
|
347 |
+
# Define the total number of training steps
|
348 |
+
# It is usually the number of epochs times the number of batches per epoch
|
349 |
+
num_training_steps = epochs * len(train_loader)
|
350 |
+
|
351 |
+
# Define the number of warmup steps
|
352 |
+
# Usually set to a fraction of total_training_steps such as 0.1 * num_training_steps
|
353 |
+
num_warmup_steps = int(num_training_steps * 0.3)
|
354 |
+
|
355 |
+
# Create the learning rate scheduler
|
356 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps)
|
357 |
+
|
358 |
+
model = Wav2Vec2ForSequenceClassification.from_pretrained("facebook/wav2vec2-base-960h", num_labels=2).to(device)
|
359 |
+
##
|
360 |
+
model_path = "/content/models/my_model_06/pytorch_model.bin"
|
361 |
+
if os.path.exists(model_path):
|
362 |
+
print(f"Loading saved model {model_path}")
|
363 |
+
model.load_state_dict(torch.load(model_path))
|
364 |
+
|
365 |
+
criterion = nn.CrossEntropyLoss()
|
366 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)
|
367 |
+
|
368 |
+
import numpy as np
|
369 |
+
|
370 |
+
def trainaug(model, dataloader, criterion, optimizer, device, loss_vals, epochs, current_epoch):
|
371 |
+
model.train()
|
372 |
+
running_loss = 0
|
373 |
+
|
374 |
+
for i, (inputs, labels) in enumerate(dataloader):
|
375 |
+
inputs = {key: value.squeeze().to(device) for key, value in inputs.items() if torch.is_tensor(value)}
|
376 |
+
labels = labels.to(device)
|
377 |
+
|
378 |
+
# Apply audio augmentation
|
379 |
+
augmented_audio = []
|
380 |
+
for audio in inputs['input_values']:
|
381 |
+
# The augmenter works with numpy arrays, so we need to convert the tensor to a numpy array
|
382 |
+
audio_np = audio.cpu().numpy()
|
383 |
+
|
384 |
+
# Apply the augmentation
|
385 |
+
augmented = augmenter(audio_np, sample_rate=16000) # Assuming a sample rate of 16000Hz
|
386 |
+
|
387 |
+
augmented_audio.append(augmented)
|
388 |
+
|
389 |
+
# Convert the list of numpy arrays back to a tensor
|
390 |
+
inputs['input_values'] = torch.from_numpy(np.array(augmented_audio)).to(device)
|
391 |
+
|
392 |
+
optimizer.zero_grad()
|
393 |
+
logits = model(**inputs).logits
|
394 |
+
loss = criterion(logits, labels)
|
395 |
+
loss.backward()
|
396 |
+
optimizer.step()
|
397 |
+
|
398 |
+
# append loss value to list
|
399 |
+
loss_vals.append(loss.item())
|
400 |
+
running_loss += loss.item()
|
401 |
+
|
402 |
+
if i % 10 == 0: # Update the plot every 10 iterations
|
403 |
+
plt.clf() # Clear the previous plot
|
404 |
+
plt.plot(loss_vals)
|
405 |
+
plt.xlim([0, len(dataloader)*epochs])
|
406 |
+
plt.ylim([0, max(loss_vals) + 2])
|
407 |
+
plt.xlabel('Training Iterations')
|
408 |
+
plt.ylabel('Loss')
|
409 |
+
plt.title(f"Training Loss at Epoch {current_epoch + 1}")
|
410 |
+
plt.pause(0.001) # Pause to update the plot
|
411 |
+
|
412 |
+
avg_loss = running_loss / len(dataloader)
|
413 |
+
print(f"Average Loss after Epoch {current_epoch + 1}: {avg_loss}\n")
|
414 |
+
return avg_loss
|
415 |
+
|
416 |
+
epochs = 20
|
417 |
+
plt.ion()
|
418 |
+
fig, ax = plt.subplots()
|
419 |
+
x_vals = np.arange(len(train_loader)*epochs)
|
420 |
+
loss_vals = []
|
421 |
+
for epoch in range(epochs):
|
422 |
+
train_loss = trainaug(model, train_loader, criterion, optimizer, device, loss_vals, epochs, epoch)
|
423 |
+
print(f"Epoch {epoch + 1}, Train Loss: {train_loss}")
|
424 |
+
|
425 |
+
val_loss, val_accuracy, wrong_files, true_labels, pred_labels = evaluate(model, validation_loader, criterion, device)
|
426 |
+
print(f"Epoch {epoch + 1}, Validation Loss: {val_loss}, Validation Accuracy: {val_accuracy:.2f}")
|
427 |
+
print("Misclassified Files")
|
428 |
+
for file_path in wrong_files:
|
429 |
+
print(file_path)
|
430 |
+
|
431 |
+
|
432 |
+
sentence_pattern = re.compile(r"_(\d+)\.wav$")
|
433 |
+
|
434 |
+
sentence_counts = Counter()
|
435 |
+
for file_path in wrong_files:
|
436 |
+
match = sentence_pattern.search(file_path)
|
437 |
+
if match:
|
438 |
+
sentence_number = int(match.group(1))
|
439 |
+
sentence_counts[sentence_number] += 1
|
440 |
+
|
441 |
+
total_wrong = len(wrong_files)
|
442 |
+
print("Total wrong files:", total_wrong)
|
443 |
+
print()
|
444 |
+
|
445 |
+
for sentence_number, count in sentence_counts.most_common():
|
446 |
+
percent = count / total_wrong * 100
|
447 |
+
print(f"Sentence {sentence_number}: {count} ({percent:.2f}%)")
|
448 |
+
scheduler.step()
|
449 |
+
print(classification_report(true_labels, pred_labels, target_names=['non_dysarthria', 'dysarthria']))
|
450 |
+
audio_file = "/content/drive/MyDrive/torgo_data/dysarthria_male/validation/M01_Session1_0005.wav"
|
451 |
+
# predicted_label = predict(model, audio_file, train_dataset.processor, device)
|
452 |
+
# print(f"Predicted label: {predicted_label}")
|
453 |
+
|
454 |
+
|
455 |
+
|
456 |
+
|
457 |
+
|
458 |
+
# Test on a specific audio file
|
459 |
+
##audio_file = "/content/drive/MyDrive/torgo_data/dysarthria_male/validation/M01_Session1_0005.wav"
|
460 |
+
##predicted_label = predict(model, audio_file, train_dataset.processor, device)
|
461 |
+
##print(f"Predicted label: {predicted_label}")
|
462 |
+
|
463 |
+
import re
|
464 |
+
from collections import Counter
|
465 |
+
import matplotlib.pyplot as plt
|
466 |
+
import numpy as np
|
467 |
+
from sklearn.metrics import classification_report
|
468 |
+
|
469 |
+
# Define the pattern to extract the sentence number from the file path
|
470 |
+
sentence_pattern = re.compile(r"_(\d+)\.wav$")
|
471 |
+
|
472 |
+
# Counter for the total number of each sentence type in the dataset
|
473 |
+
total_sentence_counts = Counter()
|
474 |
+
|
475 |
+
for file_path in train_loader.dataset.data: # Access the file paths directly
|
476 |
+
match = sentence_pattern.search(file_path)
|
477 |
+
if match:
|
478 |
+
sentence_number = int(match.group(1))
|
479 |
+
total_sentence_counts[sentence_number] += 1
|
480 |
+
|
481 |
+
epochs = 1
|
482 |
+
plt.ion()
|
483 |
+
fig, ax = plt.subplots()
|
484 |
+
x_vals = np.arange(len(train_loader)*epochs)
|
485 |
+
loss_vals = []
|
486 |
+
|
487 |
+
for epoch in range(epochs):
|
488 |
+
# train_loss = trainaug(model, train_loader, criterion, optimizer, device, loss_vals, epochs, epoch)
|
489 |
+
# print(f"Epoch {epoch + 1}, Train Loss: {train_loss}")
|
490 |
+
|
491 |
+
val_loss, val_accuracy, wrong_files, true_labels, pred_labels = evaluate(model, validation_loader, criterion, device)
|
492 |
+
print(f"Epoch {epoch + 1}, Validation Loss: {val_loss}, Validation Accuracy: {val_accuracy:.2f}")
|
493 |
+
print("Misclassified Files")
|
494 |
+
for file_path in wrong_files:
|
495 |
+
print(file_path)
|
496 |
+
|
497 |
+
# Counter for the misclassified sentences
|
498 |
+
sentence_counts = Counter()
|
499 |
+
|
500 |
+
for file_path in wrong_files:
|
501 |
+
match = sentence_pattern.search(file_path)
|
502 |
+
if match:
|
503 |
+
sentence_number = int(match.group(1))
|
504 |
+
sentence_counts[sentence_number] += 1
|
505 |
+
|
506 |
+
print("Total wrong files:", len(wrong_files))
|
507 |
+
print()
|
508 |
+
|
509 |
+
for sentence_number, count in sentence_counts.most_common():
|
510 |
+
percent = count / total_sentence_counts[sentence_number] * 100
|
511 |
+
print(f"Sentence {sentence_number}: {count} ({percent:.2f}%)")
|
512 |
+
|
513 |
+
scheduler.step()
|
514 |
+
print(classification_report(true_labels, pred_labels, target_names=['non_dysarthria', 'dysarthria']))
|
515 |
+
|
516 |
+
torch.save(model.state_dict(), "dysarthria_classifier2.pth")
|
517 |
+
|
518 |
+
save_dir = "models/my_model_06"
|
519 |
+
model.save_pretrained(save_dir)
|
520 |
+
|
521 |
+
"""## Cross testing
|
522 |
+
|
523 |
+
"""
|
524 |
+
|
525 |
+
# dysarthria_validation_path = "/content/drive/MyDrive/RECORDINGS_ANALYSIS/SP_ANALYSIS/testing"
|
526 |
+
# non_dysarthria_validation_path = "/content/drive/MyDrive/RECORDINGS_ANALYSIS/CT_ANALYSIS/testing"
|
527 |
+
|
528 |
+
#dysarthria_validation_files = get_wav_files(dysarthria_validation_path)
|
529 |
+
# non_dysarthria_validation_files = get_wav_files(non_dysarthria_validation_path)
|
530 |
+
|
531 |
+
#validation_data = dysarthria_validation_files + non_dysarthria_validation_files
|
532 |
+
#validation_labels = [1] * len(dysarthria_validation_files) + [0] * len(non_dysarthria_validation_files)
|
533 |
+
|
534 |
+
epochs = 1
|
535 |
+
plt.ion()
|
536 |
+
fig, ax = plt.subplots()
|
537 |
+
x_vals = np.arange(len(train_loader)*epochs)
|
538 |
+
loss_vals = []
|
539 |
+
for epoch in range(epochs):
|
540 |
+
#train_loss = train(model, train_loader, criterion, optimizer, device, loss_vals, epochs, epoch)
|
541 |
+
#print(f"Epoch {epoch + 1}, Train Loss: {train_loss}")
|
542 |
+
|
543 |
+
val_loss, val_accuracy, wrong_files, true_labels, pred_labels = evaluate(model, validation_loader, criterion, device)
|
544 |
+
print(f"Epoch {epoch + 1}, Validation Loss: {val_loss}, Validation Accuracy: {val_accuracy:.2f}")
|
545 |
+
print("Misclassified Files")
|
546 |
+
for file_path in wrong_files:
|
547 |
+
print(file_path)
|
548 |
+
|
549 |
+
|
550 |
+
sentence_pattern = re.compile(r"_(\d+)\.wav$")
|
551 |
+
|
552 |
+
sentence_counts = Counter()
|
553 |
+
for file_path in wrong_files:
|
554 |
+
match = sentence_pattern.search(file_path)
|
555 |
+
if match:
|
556 |
+
sentence_number = int(match.group(1))
|
557 |
+
sentence_counts[sentence_number] += 1
|
558 |
+
|
559 |
+
total_wrong = len(wrong_files)
|
560 |
+
print("Total wrong files:", total_wrong)
|
561 |
+
print()
|
562 |
+
|
563 |
+
for sentence_number, count in sentence_counts.most_common():
|
564 |
+
percent = count / total_wrong * 100
|
565 |
+
print(f"Sentence {sentence_number}: {count} ({percent:.2f}%)")
|
566 |
+
scheduler.step()
|
567 |
+
print(classification_report(true_labels, pred_labels, target_names=['non_dysarthria', 'dysarthria']))
|
568 |
+
audio_file = "/content/drive/MyDrive/torgo_data/dysarthria_male/validation/M01_Session1_0005.wav"
|
569 |
+
predicted_label = predict(model, audio_file, train_dataset.processor, device)
|
570 |
+
print(f"Predicted label: {predicted_label}")
|
571 |
+
|
572 |
+
|
573 |
+
|
574 |
+
|
575 |
+
|
576 |
+
# Test on a specific audio file
|
577 |
+
##audio_file = "/content/drive/MyDrive/torgo_data/dysarthria_male/validation/M01_Session1_0005.wav"
|
578 |
+
##predicted_label = predict(model, audio_file, train_dataset.processor, device)
|
579 |
+
##print(f"Predicted label: {predicted_label}")
|
580 |
+
|
581 |
+
"""## DEBUGGING"""
|
582 |
+
|
583 |
+
dysarthria_path = "/content/drive/MyDrive/torgo_data/dysarthria_male/training"
|
584 |
+
non_dysarthria_path = "/content/drive/MyDrive/torgo_data/non_dysarthria_male/training"
|
585 |
+
|
586 |
+
dysarthria_files = [os.path.join(dysarthria_path, f) for f in os.listdir(dysarthria_path) if f.endswith('.wav')]
|
587 |
+
non_dysarthria_files = [os.path.join(non_dysarthria_path, f) for f in os.listdir(non_dysarthria_path) if f.endswith('.wav')]
|
588 |
+
|
589 |
+
data = dysarthria_files + non_dysarthria_files
|
590 |
+
labels = [1] * len(dysarthria_files) + [0] * len(non_dysarthria_files)
|
591 |
+
|
592 |
+
train_data, test_data, train_labels, test_labels = train_test_split(data, labels, test_size=0.2)
|
593 |
+
|
594 |
+
train_dataset = DysarthriaDataset(train_data, train_labels)
|
595 |
+
test_dataset = DysarthriaDataset(test_data, test_labels)
|
596 |
+
|
597 |
+
train_loader = DataLoader(train_dataset, batch_size=4, drop_last=True)
|
598 |
+
test_loader = DataLoader(test_dataset, batch_size=4, drop_last=True)
|
599 |
+
|
600 |
+
|
601 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
602 |
+
# model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to(device)
|
603 |
+
# model.classifier = nn.Linear(model.config.hidden_size, 2).to(device)
|
604 |
+
|
605 |
+
model = Wav2Vec2ForSequenceClassification.from_pretrained("facebook/wav2vec2-base-960h", num_labels=2).to(device)
|
606 |
+
|
607 |
+
max_length = 100_000
|
608 |
+
processor = train_dataset.processor
|
609 |
+
|
610 |
+
model.eval()
|
611 |
+
audio_file = "/content/drive/MyDrive/torgo_data/dysarthria_male/validation/M01_Session1_0005.wav"
|
612 |
+
# predicted_label = predict(model, audio_file, train_dataset.processor, device)
|
613 |
+
# print(f"Predicted label: {predicted_label}")
|
614 |
+
|
615 |
+
wav_data, _ = sf.read(audio_file)
|
616 |
+
inputs = processor(wav_data, sampling_rate=16000, return_tensors="pt", padding=True)
|
617 |
+
input_values = inputs.input_values.squeeze(0) # Squeeze the batch dimension
|
618 |
+
if max_length - input_values.shape[-1] > 0:
|
619 |
+
input_values = torch.cat([input_values, torch.zeros((max_length - input_values.shape[-1],))], dim=-1)
|
620 |
+
else:
|
621 |
+
input_values = input_values[:max_length]
|
622 |
+
|
623 |
+
input_values = input_values.unsqueeze(0).to(device)
|
624 |
+
input_values.shape
|
625 |
+
|
626 |
+
with torch.no_grad():
|
627 |
+
outputs = model(**{"input_values": input_values})
|
628 |
+
logits = outputs.logits
|
629 |
+
|
630 |
+
input_values.shape, logits.shape
|
631 |
+
|
632 |
+
import torch.nn.functional as F
|
633 |
+
# Remove the batch dimension.
|
634 |
+
logits = logits.squeeze()
|
635 |
+
predicted_class_id = torch.argmax(logits, dim=-1)
|
636 |
+
predicted_class_id
|
637 |
+
|
638 |
+
"""Cross testing
|
639 |
+
|
640 |
+
##origial code
|
641 |
+
"""
|
642 |
+
|
643 |
+
import os
|
644 |
+
import soundfile as sf
|
645 |
+
import torch
|
646 |
+
import torch.nn as nn
|
647 |
+
import torch.nn.functional as F
|
648 |
+
from torch.utils.data import Dataset, DataLoader
|
649 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, Wav2Vec2ForSequenceClassification
|
650 |
+
from sklearn.model_selection import train_test_split
|
651 |
+
|
652 |
+
# Custom Dataset class
|
653 |
+
class DysarthriaDataset(Dataset):
|
654 |
+
def __init__(self, data, labels, max_length=100000):
|
655 |
+
self.data = data
|
656 |
+
self.labels = labels
|
657 |
+
self.max_length = max_length
|
658 |
+
self.processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
659 |
+
|
660 |
+
def __len__(self):
|
661 |
+
return len(self.data)
|
662 |
+
|
663 |
+
def __getitem__(self, idx):
|
664 |
+
try:
|
665 |
+
wav_data, _ = sf.read(self.data[idx])
|
666 |
+
except:
|
667 |
+
print(f"Error opening file: {self.data[idx]}. Skipping...")
|
668 |
+
return self.__getitem__((idx + 1) % len(self.data))
|
669 |
+
inputs = self.processor(wav_data, sampling_rate=16000, return_tensors="pt", padding=True)
|
670 |
+
input_values = inputs.input_values.squeeze(0) # Squeeze the batch dimension
|
671 |
+
if self.max_length - input_values.shape[-1] > 0:
|
672 |
+
input_values = torch.cat([input_values, torch.zeros((self.max_length - input_values.shape[-1],))], dim=-1)
|
673 |
+
else:
|
674 |
+
input_values = input_values[:self.max_length]
|
675 |
+
|
676 |
+
# Remove unsqueezing the channel dimension
|
677 |
+
# input_values = input_values.unsqueeze(0)
|
678 |
+
|
679 |
+
# label = torch.zeros(32,dtype=torch.long)
|
680 |
+
# label[self.labels[idx]] = 1
|
681 |
+
|
682 |
+
### CHANGES: simply return the label as a single integer
|
683 |
+
return {"input_values": input_values}, self.labels[idx]
|
684 |
+
###
|
685 |
+
|
686 |
+
|
687 |
+
def train(model, dataloader, criterion, optimizer, device, ax, loss_vals, x_vals, fig,train_loader,epochs):
|
688 |
+
model.train()
|
689 |
+
running_loss = 0
|
690 |
+
|
691 |
+
for i, (inputs, labels) in enumerate(dataloader):
|
692 |
+
inputs = {key: value.squeeze().to(device) for key, value in inputs.items()}
|
693 |
+
labels = labels.to(device)
|
694 |
+
|
695 |
+
optimizer.zero_grad()
|
696 |
+
logits = model(**inputs).logits
|
697 |
+
loss = criterion(logits, labels)
|
698 |
+
loss.backward()
|
699 |
+
optimizer.step()
|
700 |
+
|
701 |
+
# append loss value to list
|
702 |
+
loss_vals.append(loss.item())
|
703 |
+
running_loss += loss.item()
|
704 |
+
|
705 |
+
if i:
|
706 |
+
# update plot
|
707 |
+
ax.clear()
|
708 |
+
ax.set_xlim([0, len(train_loader)*epochs])
|
709 |
+
ax.set_xlabel('Training Iterations')
|
710 |
+
ax.set_ylim([0, max(loss_vals) + 2])
|
711 |
+
ax.set_ylabel('Loss')
|
712 |
+
ax.plot(x_vals[:len(loss_vals)], loss_vals)
|
713 |
+
fig.canvas.draw()
|
714 |
+
plt.pause(0.001)
|
715 |
+
|
716 |
+
avg_loss = running_loss / len(dataloader)
|
717 |
+
print(avg_loss)
|
718 |
+
print("\n")
|
719 |
+
return avg_loss
|
720 |
+
|
721 |
+
|
722 |
+
|
723 |
+
def main():
|
724 |
+
dysarthria_path = "/content/drive/MyDrive/RECORDINGS_ANALYSIS/SP_ANALYSIS/training"
|
725 |
+
non_dysarthria_path = "/content/drive/MyDrive/RECORDINGS_ANALYSIS/CT_ANALYSIS/training"
|
726 |
+
|
727 |
+
dysarthria_files = get_wav_files(dysarthria_path)
|
728 |
+
non_dysarthria_files = get_wav_files(non_dysarthria_path)
|
729 |
+
|
730 |
+
data = dysarthria_files + non_dysarthria_files
|
731 |
+
labels = [1] * len(dysarthria_files) + [0] * len(non_dysarthria_files)
|
732 |
+
|
733 |
+
train_data, test_data, train_labels, test_labels = train_test_split(data, labels, test_size=0.2)
|
734 |
+
|
735 |
+
train_dataset = DysarthriaDataset(train_data, train_labels)
|
736 |
+
test_dataset = DysarthriaDataset(test_data, test_labels)
|
737 |
+
|
738 |
+
train_loader = DataLoader(train_dataset, batch_size=8, drop_last=True)
|
739 |
+
test_loader = DataLoader(test_dataset, batch_size=8, drop_last=True)
|
740 |
+
validation_loader = DataLoader(test_dataset, batch_size=8, drop_last=True)
|
741 |
+
|
742 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
743 |
+
# model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to(device)
|
744 |
+
# model.classifier = nn.Linear(model.config.hidden_size, 2).to(device)
|
745 |
+
|
746 |
+
### NEW CODES
|
747 |
+
# It seems like the classifier layer is excluded from the model's forward method (i.e., model(**inputs)).
|
748 |
+
# That's why the number of labels in the output was 32 instead of 2 even when you had already changed the classifier.
|
749 |
+
# Instead, huggingface offers the option for loading the Wav2Vec model with an adjustable classifier head on top (by setting num_labels).
|
750 |
+
|
751 |
+
model = Wav2Vec2ForSequenceClassification.from_pretrained("facebook/wav2vec2-base-960h", num_labels=2).to(device)
|
752 |
+
###
|
753 |
+
#model_path = "/content/dysarthria_classifier3.pth"
|
754 |
+
#if os.path.exists(model_path):
|
755 |
+
#print(f"Loading saved model {model_path}")
|
756 |
+
#model.load_state_dict(torch.load(model_path))
|
757 |
+
|
758 |
+
criterion = nn.CrossEntropyLoss()
|
759 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=3e-5)
|
760 |
+
dysarthria_validation_path = "/content/drive/MyDrive/RECORDINGS_ANALYSIS/SP_ANALYSIS/testing"
|
761 |
+
non_dysarthria_validation_path = "/content/drive/MyDrive/RECORDINGS_ANALYSIS/CT_ANALYSIS/testing"
|
762 |
+
|
763 |
+
dysarthria_validation_files = get_wav_files(dysarthria_validation_path)
|
764 |
+
non_dysarthria_validation_files = get_wav_files(non_dysarthria_validation_path)
|
765 |
+
|
766 |
+
validation_data = dysarthria_validation_files + non_dysarthria_validation_files
|
767 |
+
validation_labels = [1] * len(dysarthria_validation_files) + [0] * len(non_dysarthria_validation_files)
|
768 |
+
|
769 |
+
epochs = 10
|
770 |
+
fig, ax = plt.subplots()
|
771 |
+
x_vals = np.arange(len(train_loader)*epochs)
|
772 |
+
loss_vals = []
|
773 |
+
nume = 1
|
774 |
+
for epoch in range(epochs):
|
775 |
+
train_loss = train(model, train_loader, criterion, optimizer, device, ax, loss_vals, x_vals, fig, train_loader, epoch+1)
|
776 |
+
print(f"Epoch {epoch + 1}, Train Loss: {train_loss}")
|
777 |
+
|
778 |
+
val_loss, val_accuracy, wrong_files = evaluate(model, validation_loader, criterion, device)
|
779 |
+
print(f"Epoch {epoch + 1}, Validation Loss: {val_loss}, Validation Accuracy: {val_accuracy:.2f}")
|
780 |
+
print("Misclassified Files")
|
781 |
+
for file_path in wrong_files:
|
782 |
+
print(file_path)
|
783 |
+
|
784 |
+
|
785 |
+
sentence_pattern = re.compile(r"_(\d+)\.wav$")
|
786 |
+
|
787 |
+
sentence_counts = Counter()
|
788 |
+
for file_path in wrong_files:
|
789 |
+
match = sentence_pattern.search(file_path)
|
790 |
+
if match:
|
791 |
+
sentence_number = int(match.group(1))
|
792 |
+
sentence_counts[sentence_number] += 1
|
793 |
+
|
794 |
+
total_wrong = len(wrong_files)
|
795 |
+
print("Total wrong files:", total_wrong)
|
796 |
+
print()
|
797 |
+
|
798 |
+
for sentence_number, count in sentence_counts.most_common():
|
799 |
+
percent = count / total_wrong * 100
|
800 |
+
print(f"Sentence {sentence_number}: {count} ({percent:.2f}%)")
|
801 |
+
|
802 |
+
|
803 |
+
torch.save(model.state_dict(), "dysarthria_classifier4.pth")
|
804 |
+
print("Predicting...")
|
805 |
+
# Test on a specific audio file
|
806 |
+
##audio_file = "/content/drive/MyDrive/torgo_data/dysarthria_male/validation/M01_Session1_0005.wav"
|
807 |
+
##predicted_label = predict(model, audio_file, train_dataset.processor, device)
|
808 |
+
##print(f"Predicted label: {predicted_label}")
|
809 |
+
|
810 |
+
def predict(model, file_path, processor, device, max_length=100000): ### CHANGES: added max_length as an argument.
|
811 |
+
model.eval()
|
812 |
+
with torch.no_grad():
|
813 |
+
wav_data, _ = sf.read(file_path)
|
814 |
+
inputs = processor(wav_data, sampling_rate=16000, return_tensors="pt", padding=True)
|
815 |
+
# inputs = {key: value.squeeze().to(device) for key, value in inputs.items()}
|
816 |
+
|
817 |
+
### NEW CODES HERE
|
818 |
+
input_values = inputs.input_values.squeeze(0) # Squeeze the batch dimension
|
819 |
+
if max_length - input_values.shape[-1] > 0:
|
820 |
+
input_values = torch.cat([input_values, torch.zeros((max_length - input_values.shape[-1],))], dim=-1)
|
821 |
+
else:
|
822 |
+
input_values = input_values[:max_length]
|
823 |
+
input_values = input_values.unsqueeze(0).to(device)
|
824 |
+
inputs = {"input_values": input_values}
|
825 |
+
###
|
826 |
+
|
827 |
+
logits = model(**inputs).logits
|
828 |
+
# _, predicted = torch.max(logits, dim=0)
|
829 |
+
|
830 |
+
### NEW CODES HERE
|
831 |
+
# Remove the batch dimension.
|
832 |
+
logits = logits.squeeze()
|
833 |
+
predicted_class_id = torch.argmax(logits, dim=-1).item()
|
834 |
+
###
|
835 |
+
|
836 |
+
# return predicted.item()
|
837 |
+
return predicted_class_id
|
838 |
+
def evaluate(model, dataloader, criterion, device):
|
839 |
+
model.eval()
|
840 |
+
running_loss = 0
|
841 |
+
correct_predictions = 0
|
842 |
+
total_predictions = 0
|
843 |
+
wrong_files = []
|
844 |
+
with torch.no_grad():
|
845 |
+
for inputs, labels in dataloader:
|
846 |
+
inputs = {key: value.squeeze().to(device) for key, value in inputs.items()}
|
847 |
+
labels = labels.to(device)
|
848 |
+
|
849 |
+
logits = model(**inputs).logits
|
850 |
+
loss = criterion(logits, labels)
|
851 |
+
running_loss += loss.item()
|
852 |
+
|
853 |
+
_, predicted = torch.max(logits, 1)
|
854 |
+
correct_predictions += (predicted == labels).sum().item()
|
855 |
+
total_predictions += labels.size(0)
|
856 |
+
|
857 |
+
wrong_idx = (predicted != labels).nonzero().squeeze().cpu().numpy()
|
858 |
+
if wrong_idx.ndim > 0:
|
859 |
+
for idx in wrong_idx:
|
860 |
+
wrong_files.append(dataloader.dataset.data[idx])
|
861 |
+
elif wrong_idx.size > 0:
|
862 |
+
wrong_files.append(dataloader.dataset.data[wrong_idx])
|
863 |
+
|
864 |
+
|
865 |
+
avg_loss = running_loss / len(dataloader)
|
866 |
+
accuracy = correct_predictions / total_predictions
|
867 |
+
return avg_loss, accuracy, wrong_files
|
868 |
+
|
869 |
+
|
870 |
+
|
871 |
+
def get_wav_files(base_path):
|
872 |
+
wav_files = []
|
873 |
+
for subject_folder in os.listdir(base_path):
|
874 |
+
subject_path = os.path.join(base_path, subject_folder)
|
875 |
+
if os.path.isdir(subject_path):
|
876 |
+
for wav_file in os.listdir(subject_path):
|
877 |
+
if wav_file.endswith('.wav'):
|
878 |
+
wav_files.append(os.path.join(subject_path, wav_file))
|
879 |
+
return wav_files
|
880 |
+
if __name__ == "__main__":
|
881 |
+
main()
|