Spaces:
Sleeping
Sleeping
chapter 3
Browse files- chapter3.ipynb +428 -0
chapter3.ipynb
ADDED
@@ -0,0 +1,428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"\n",
|
10 |
+
"from fastai.vision.all import *\n",
|
11 |
+
"import gradio as gr\n",
|
12 |
+
"import timm"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "code",
|
17 |
+
"execution_count": 3,
|
18 |
+
"metadata": {},
|
19 |
+
"outputs": [
|
20 |
+
{
|
21 |
+
"data": {
|
22 |
+
"text/plain": [
|
23 |
+
"['convnext_atto',\n",
|
24 |
+
" 'convnext_atto_ols',\n",
|
25 |
+
" 'convnext_base',\n",
|
26 |
+
" 'convnext_base_384_in22ft1k',\n",
|
27 |
+
" 'convnext_base_in22ft1k',\n",
|
28 |
+
" 'convnext_base_in22k',\n",
|
29 |
+
" 'convnext_femto',\n",
|
30 |
+
" 'convnext_femto_ols',\n",
|
31 |
+
" 'convnext_large',\n",
|
32 |
+
" 'convnext_large_384_in22ft1k',\n",
|
33 |
+
" 'convnext_large_in22ft1k',\n",
|
34 |
+
" 'convnext_large_in22k',\n",
|
35 |
+
" 'convnext_nano',\n",
|
36 |
+
" 'convnext_nano_ols',\n",
|
37 |
+
" 'convnext_pico',\n",
|
38 |
+
" 'convnext_pico_ols',\n",
|
39 |
+
" 'convnext_small',\n",
|
40 |
+
" 'convnext_small_384_in22ft1k',\n",
|
41 |
+
" 'convnext_small_in22ft1k',\n",
|
42 |
+
" 'convnext_small_in22k',\n",
|
43 |
+
" 'convnext_tiny',\n",
|
44 |
+
" 'convnext_tiny_384_in22ft1k',\n",
|
45 |
+
" 'convnext_tiny_hnf',\n",
|
46 |
+
" 'convnext_tiny_in22ft1k',\n",
|
47 |
+
" 'convnext_tiny_in22k',\n",
|
48 |
+
" 'convnext_xlarge_384_in22ft1k',\n",
|
49 |
+
" 'convnext_xlarge_in22ft1k',\n",
|
50 |
+
" 'convnext_xlarge_in22k']"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
"execution_count": 3,
|
54 |
+
"metadata": {},
|
55 |
+
"output_type": "execute_result"
|
56 |
+
}
|
57 |
+
],
|
58 |
+
"source": [
|
59 |
+
"timm.list_models('convnext*')"
|
60 |
+
]
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"cell_type": "code",
|
64 |
+
"execution_count": 4,
|
65 |
+
"metadata": {},
|
66 |
+
"outputs": [
|
67 |
+
{
|
68 |
+
"ename": "NameError",
|
69 |
+
"evalue": "name 'dls' is not defined",
|
70 |
+
"output_type": "error",
|
71 |
+
"traceback": [
|
72 |
+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
73 |
+
"\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
|
74 |
+
"Cell \u001b[1;32mIn[4], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m learn \u001b[39m=\u001b[39m vision_learner(dls , \u001b[39m'\u001b[39m\u001b[39mconvnext_tiny_in22k\u001b[39m\u001b[39m'\u001b[39m , metrics \u001b[39m=\u001b[39m error_rate)\u001b[39m.\u001b[39mto_fp16()\n\u001b[0;32m 2\u001b[0m learn\u001b[39m.\u001b[39mfine_tune(\u001b[39m3\u001b[39m)\n",
|
75 |
+
"\u001b[1;31mNameError\u001b[0m: name 'dls' is not defined"
|
76 |
+
]
|
77 |
+
}
|
78 |
+
],
|
79 |
+
"source": []
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"execution_count": 6,
|
84 |
+
"metadata": {},
|
85 |
+
"outputs": [
|
86 |
+
{
|
87 |
+
"data": {
|
88 |
+
"text/plain": [
|
89 |
+
"10.75"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
"execution_count": 6,
|
93 |
+
"metadata": {},
|
94 |
+
"output_type": "execute_result"
|
95 |
+
}
|
96 |
+
],
|
97 |
+
"source": [
|
98 |
+
"def quad(a , b , c , x): return a*x**2 + b*x + c\n",
|
99 |
+
"\n",
|
100 |
+
"quad(3 , 2 , 1 , 1.5)\n",
|
101 |
+
"\n"
|
102 |
+
]
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"cell_type": "code",
|
106 |
+
"execution_count": 8,
|
107 |
+
"metadata": {},
|
108 |
+
"outputs": [
|
109 |
+
{
|
110 |
+
"data": {
|
111 |
+
"text/plain": [
|
112 |
+
"10.75"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
"execution_count": 8,
|
116 |
+
"metadata": {},
|
117 |
+
"output_type": "execute_result"
|
118 |
+
}
|
119 |
+
],
|
120 |
+
"source": [
|
121 |
+
"from functools import partial\n",
|
122 |
+
"\n",
|
123 |
+
"def mk_quad(a , b , c): return partial(quad ,a , b , c)\n",
|
124 |
+
"\n",
|
125 |
+
"f = mk_quad(3 , 2 , 1)\n",
|
126 |
+
"\n",
|
127 |
+
"f(1.5)"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"execution_count": 10,
|
133 |
+
"metadata": {},
|
134 |
+
"outputs": [],
|
135 |
+
"source": [
|
136 |
+
"import torch\n",
|
137 |
+
"import matplotlib.pyplot as plt \n",
|
138 |
+
"def plot_function(f, title=None, min=-2.1, max=2.1, color='r', ylim=None):\n",
|
139 |
+
" x = torch.linspace(min,max, 100)[:,None]\n",
|
140 |
+
" if ylim: plt.ylim(ylim)\n",
|
141 |
+
" plt.plot(x, f(x), color)\n",
|
142 |
+
" if title is not None: plt.title(title)"
|
143 |
+
]
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"cell_type": "code",
|
147 |
+
"execution_count": 9,
|
148 |
+
"metadata": {},
|
149 |
+
"outputs": [],
|
150 |
+
"source": [
|
151 |
+
"def mse(preds , acts): return ((preds - acts)**2).mean()"
|
152 |
+
]
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"cell_type": "code",
|
156 |
+
"execution_count": 13,
|
157 |
+
"metadata": {},
|
158 |
+
"outputs": [],
|
159 |
+
"source": [
|
160 |
+
"def noise(x, scale): return np.random.normal(scale=scale, size=x.shape)\n",
|
161 |
+
"def add_noise(x, mult, add): return x * (1+noise(x,mult)) + noise(x,add)"
|
162 |
+
]
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"cell_type": "code",
|
166 |
+
"execution_count": 14,
|
167 |
+
"metadata": {},
|
168 |
+
"outputs": [],
|
169 |
+
"source": [
|
170 |
+
"import numpy as np\n",
|
171 |
+
"np.random.seed(42)\n",
|
172 |
+
"\n",
|
173 |
+
"x = torch.linspace(-2, 2, steps=20)[:,None]\n",
|
174 |
+
"y = add_noise(f(x), 0.15, 1.5)"
|
175 |
+
]
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"cell_type": "code",
|
179 |
+
"execution_count": 15,
|
180 |
+
"metadata": {},
|
181 |
+
"outputs": [
|
182 |
+
{
|
183 |
+
"data": {
|
184 |
+
"application/vnd.jupyter.widget-view+json": {
|
185 |
+
"model_id": "80a6fa4ee63e4e1c8cf49638c80adf50",
|
186 |
+
"version_major": 2,
|
187 |
+
"version_minor": 0
|
188 |
+
},
|
189 |
+
"text/plain": [
|
190 |
+
"interactive(children=(FloatSlider(value=1.5, description='a', max=4.5, min=-1.5), FloatSlider(value=1.5, descr…"
|
191 |
+
]
|
192 |
+
},
|
193 |
+
"metadata": {},
|
194 |
+
"output_type": "display_data"
|
195 |
+
}
|
196 |
+
],
|
197 |
+
"source": [
|
198 |
+
"from ipywidgets import interact\n",
|
199 |
+
"@interact(a=1.5 , b = 1.5 , c=1.5)\n",
|
200 |
+
"def plot_quad(a , b , c):\n",
|
201 |
+
" f = mk_quad(a , b , c)\n",
|
202 |
+
" plt.scatter(x , y)\n",
|
203 |
+
" loss = mse(f(x) , y)\n",
|
204 |
+
" plot_function(f , ylim=(-3 , 12) , title = f\"MSE: {loss:.2f}\")"
|
205 |
+
]
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"cell_type": "code",
|
209 |
+
"execution_count": 16,
|
210 |
+
"metadata": {},
|
211 |
+
"outputs": [],
|
212 |
+
"source": [
|
213 |
+
"def quad_mse(params):\n",
|
214 |
+
" f = mk_quad(*params)\n",
|
215 |
+
" return mse(f(x) , y)"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "code",
|
220 |
+
"execution_count": 20,
|
221 |
+
"metadata": {},
|
222 |
+
"outputs": [
|
223 |
+
{
|
224 |
+
"data": {
|
225 |
+
"text/plain": [
|
226 |
+
"tensor([1.5000, 1.5000, 1.5000], requires_grad=True)"
|
227 |
+
]
|
228 |
+
},
|
229 |
+
"execution_count": 20,
|
230 |
+
"metadata": {},
|
231 |
+
"output_type": "execute_result"
|
232 |
+
}
|
233 |
+
],
|
234 |
+
"source": [
|
235 |
+
"abc = torch.tensor([1.5 , 1.5 , 1.5])\n",
|
236 |
+
"abc.requires_grad_()\n",
|
237 |
+
"\n"
|
238 |
+
]
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"cell_type": "code",
|
242 |
+
"execution_count": 21,
|
243 |
+
"metadata": {},
|
244 |
+
"outputs": [
|
245 |
+
{
|
246 |
+
"data": {
|
247 |
+
"text/plain": [
|
248 |
+
"tensor(5.4892, dtype=torch.float64, grad_fn=<MeanBackward0>)"
|
249 |
+
]
|
250 |
+
},
|
251 |
+
"execution_count": 21,
|
252 |
+
"metadata": {},
|
253 |
+
"output_type": "execute_result"
|
254 |
+
}
|
255 |
+
],
|
256 |
+
"source": [
|
257 |
+
"loss = quad_mse(abc)\n",
|
258 |
+
"\n",
|
259 |
+
"loss"
|
260 |
+
]
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"cell_type": "code",
|
264 |
+
"execution_count": 22,
|
265 |
+
"metadata": {},
|
266 |
+
"outputs": [],
|
267 |
+
"source": [
|
268 |
+
"loss.backward()"
|
269 |
+
]
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"cell_type": "code",
|
273 |
+
"execution_count": 23,
|
274 |
+
"metadata": {},
|
275 |
+
"outputs": [
|
276 |
+
{
|
277 |
+
"data": {
|
278 |
+
"text/plain": [
|
279 |
+
"tensor([-7.0908, 1.0602, -1.8620])"
|
280 |
+
]
|
281 |
+
},
|
282 |
+
"execution_count": 23,
|
283 |
+
"metadata": {},
|
284 |
+
"output_type": "execute_result"
|
285 |
+
}
|
286 |
+
],
|
287 |
+
"source": [
|
288 |
+
"abc.grad"
|
289 |
+
]
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"cell_type": "code",
|
293 |
+
"execution_count": 27,
|
294 |
+
"metadata": {},
|
295 |
+
"outputs": [
|
296 |
+
{
|
297 |
+
"name": "stdout",
|
298 |
+
"output_type": "stream",
|
299 |
+
"text": [
|
300 |
+
"LOSS IS tensor(2.6496, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
301 |
+
"LOSS IS tensor(3.3536, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
302 |
+
"LOSS IS tensor(4.1631, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
303 |
+
"LOSS IS tensor(4.7701, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
304 |
+
"LOSS IS tensor(4.9408, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
305 |
+
"LOSS IS tensor(4.5979, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
306 |
+
"LOSS IS tensor(3.8490, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
307 |
+
"LOSS IS tensor(2.9481, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
308 |
+
"LOSS IS tensor(2.2058, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
309 |
+
"LOSS IS tensor(1.8796, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
310 |
+
"LOSS IS tensor(2.0819, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
311 |
+
"LOSS IS tensor(2.7403, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
312 |
+
"LOSS IS tensor(3.6224, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
313 |
+
"LOSS IS tensor(4.4176, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
314 |
+
"LOSS IS tensor(4.8469, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
315 |
+
"LOSS IS tensor(4.7612, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
316 |
+
"LOSS IS tensor(4.1943, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
317 |
+
"LOSS IS tensor(3.3515, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
318 |
+
"LOSS IS tensor(2.5374, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
319 |
+
"LOSS IS tensor(2.0492, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
320 |
+
"LOSS IS tensor(2.0717, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
321 |
+
"LOSS IS tensor(2.6126, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
322 |
+
"LOSS IS tensor(3.4991, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
323 |
+
"LOSS IS tensor(4.4391, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
324 |
+
"LOSS IS tensor(5.1229, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
325 |
+
"LOSS IS tensor(5.3318, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
326 |
+
"LOSS IS tensor(5.0142, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
327 |
+
"LOSS IS tensor(4.3023, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
328 |
+
"LOSS IS tensor(3.4640, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
329 |
+
"LOSS IS tensor(2.8078, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
330 |
+
"LOSS IS tensor(2.5724, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
331 |
+
"LOSS IS tensor(2.8419, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
332 |
+
"LOSS IS tensor(3.5167, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
333 |
+
"LOSS IS tensor(4.3478, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
334 |
+
"LOSS IS tensor(5.0262, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
335 |
+
"LOSS IS tensor(5.2927, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
336 |
+
"LOSS IS tensor(5.0303, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
337 |
+
"LOSS IS tensor(4.3074, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
338 |
+
"LOSS IS tensor(3.3546, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
339 |
+
"LOSS IS tensor(2.4847, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
340 |
+
"LOSS IS tensor(1.9837, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
341 |
+
"LOSS IS tensor(2.0101, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
342 |
+
"LOSS IS tensor(2.5399, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
343 |
+
"LOSS IS tensor(3.3748, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
344 |
+
"LOSS IS tensor(4.2127, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
345 |
+
"LOSS IS tensor(4.7532, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
346 |
+
"LOSS IS tensor(4.8036, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
347 |
+
"LOSS IS tensor(4.3463, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
348 |
+
"LOSS IS tensor(3.5442, dtype=torch.float64, grad_fn=<MeanBackward0>)\n",
|
349 |
+
"LOSS IS tensor(2.6829, dtype=torch.float64, grad_fn=<MeanBackward0>)\n"
|
350 |
+
]
|
351 |
+
}
|
352 |
+
],
|
353 |
+
"source": [
|
354 |
+
"for i in range(50):\n",
|
355 |
+
" loss = quad_mse(abc)\n",
|
356 |
+
" loss.backward()\n",
|
357 |
+
" with torch.no_grad():\n",
|
358 |
+
" abc -= abc.grad * 0.01\n",
|
359 |
+
" print(\"LOSS IS\" , loss)"
|
360 |
+
]
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"cell_type": "code",
|
364 |
+
"execution_count": 28,
|
365 |
+
"metadata": {},
|
366 |
+
"outputs": [
|
367 |
+
{
|
368 |
+
"data": {
|
369 |
+
"text/plain": [
|
370 |
+
"tensor([2.8198, 0.7940, 0.9271], requires_grad=True)"
|
371 |
+
]
|
372 |
+
},
|
373 |
+
"execution_count": 28,
|
374 |
+
"metadata": {},
|
375 |
+
"output_type": "execute_result"
|
376 |
+
}
|
377 |
+
],
|
378 |
+
"source": [
|
379 |
+
"abc"
|
380 |
+
]
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"cell_type": "code",
|
384 |
+
"execution_count": 29,
|
385 |
+
"metadata": {},
|
386 |
+
"outputs": [],
|
387 |
+
"source": [
|
388 |
+
"def rectified_linear(m , b , x):\n",
|
389 |
+
" y = m*x + b\n",
|
390 |
+
" return torch.clip(y , 0.0)\n"
|
391 |
+
]
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"cell_type": "code",
|
395 |
+
"execution_count": null,
|
396 |
+
"metadata": {},
|
397 |
+
"outputs": [],
|
398 |
+
"source": []
|
399 |
+
}
|
400 |
+
],
|
401 |
+
"metadata": {
|
402 |
+
"kernelspec": {
|
403 |
+
"display_name": "diffusers",
|
404 |
+
"language": "python",
|
405 |
+
"name": "python3"
|
406 |
+
},
|
407 |
+
"language_info": {
|
408 |
+
"codemirror_mode": {
|
409 |
+
"name": "ipython",
|
410 |
+
"version": 3
|
411 |
+
},
|
412 |
+
"file_extension": ".py",
|
413 |
+
"mimetype": "text/x-python",
|
414 |
+
"name": "python",
|
415 |
+
"nbconvert_exporter": "python",
|
416 |
+
"pygments_lexer": "ipython3",
|
417 |
+
"version": "3.8.16"
|
418 |
+
},
|
419 |
+
"orig_nbformat": 4,
|
420 |
+
"vscode": {
|
421 |
+
"interpreter": {
|
422 |
+
"hash": "d26bfdf1b33eed3ee2dd554c3e2dd92c45e09514ce35d65c074828f753b40123"
|
423 |
+
}
|
424 |
+
}
|
425 |
+
},
|
426 |
+
"nbformat": 4,
|
427 |
+
"nbformat_minor": 2
|
428 |
+
}
|