Spaces:
Running
on
L4
Running
on
L4
File size: 22,946 Bytes
d945eeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 |
import math
from typing import Tuple
import torch
import torch.nn.functional as F
from jaxtyping import Float, Integer
from torch import Tensor
from sf3d.models.utils import dot, triangle_intersection_2d
def _box_assign_vertex_to_cube_face(
vertex_positions: Float[Tensor, "Nv 3"],
vertex_normals: Float[Tensor, "Nv 3"],
triangle_idxs: Integer[Tensor, "Nf 3"],
bbox: Float[Tensor, "2 3"],
) -> Tuple[Float[Tensor, "Nf 3 2"], Integer[Tensor, "Nf 3"]]:
# Test to not have a scaled model to fit the space better
# bbox_min = bbox[:1].mean(-1, keepdim=True)
# bbox_max = bbox[1:].mean(-1, keepdim=True)
# v_pos_normalized = (vertex_positions - bbox_min) / (bbox_max - bbox_min)
# Create a [0, 1] normalized vertex position
v_pos_normalized = (vertex_positions - bbox[:1]) / (bbox[1:] - bbox[:1])
# And to [-1, 1]
v_pos_normalized = 2.0 * v_pos_normalized - 1.0
# Get all vertex positions for each triangle
# Now how do we define to which face the triangle belongs? Mean face pos? Max vertex pos?
v0 = v_pos_normalized[triangle_idxs[:, 0]]
v1 = v_pos_normalized[triangle_idxs[:, 1]]
v2 = v_pos_normalized[triangle_idxs[:, 2]]
tri_stack = torch.stack([v0, v1, v2], dim=1)
vn0 = vertex_normals[triangle_idxs[:, 0]]
vn1 = vertex_normals[triangle_idxs[:, 1]]
vn2 = vertex_normals[triangle_idxs[:, 2]]
tri_stack_nrm = torch.stack([vn0, vn1, vn2], dim=1)
# Just average the normals per face
face_normal = F.normalize(torch.sum(tri_stack_nrm, 1), eps=1e-6, dim=-1)
# Now decide based on the face normal in which box map we project
# abs_x, abs_y, abs_z = tri_stack_nrm.abs().unbind(-1)
abs_x, abs_y, abs_z = tri_stack.abs().unbind(-1)
axis = torch.tensor(
[
[1, 0, 0], # 0
[-1, 0, 0], # 1
[0, 1, 0], # 2
[0, -1, 0], # 3
[0, 0, 1], # 4
[0, 0, -1], # 5
],
device=face_normal.device,
dtype=face_normal.dtype,
)
face_normal_axis = (face_normal[:, None] * axis[None]).sum(-1)
index = face_normal_axis.argmax(-1)
max_axis, uc, vc = (
torch.ones_like(abs_x),
torch.zeros_like(tri_stack[..., :1]),
torch.zeros_like(tri_stack[..., :1]),
)
mask_pos_x = index == 0
max_axis[mask_pos_x] = abs_x[mask_pos_x]
uc[mask_pos_x] = tri_stack[mask_pos_x][..., 1:2]
vc[mask_pos_x] = -tri_stack[mask_pos_x][..., -1:]
mask_neg_x = index == 1
max_axis[mask_neg_x] = abs_x[mask_neg_x]
uc[mask_neg_x] = tri_stack[mask_neg_x][..., 1:2]
vc[mask_neg_x] = -tri_stack[mask_neg_x][..., -1:]
mask_pos_y = index == 2
max_axis[mask_pos_y] = abs_y[mask_pos_y]
uc[mask_pos_y] = tri_stack[mask_pos_y][..., 0:1]
vc[mask_pos_y] = -tri_stack[mask_pos_y][..., -1:]
mask_neg_y = index == 3
max_axis[mask_neg_y] = abs_y[mask_neg_y]
uc[mask_neg_y] = tri_stack[mask_neg_y][..., 0:1]
vc[mask_neg_y] = -tri_stack[mask_neg_y][..., -1:]
mask_pos_z = index == 4
max_axis[mask_pos_z] = abs_z[mask_pos_z]
uc[mask_pos_z] = tri_stack[mask_pos_z][..., 0:1]
vc[mask_pos_z] = tri_stack[mask_pos_z][..., 1:2]
mask_neg_z = index == 5
max_axis[mask_neg_z] = abs_z[mask_neg_z]
uc[mask_neg_z] = tri_stack[mask_neg_z][..., 0:1]
vc[mask_neg_z] = -tri_stack[mask_neg_z][..., 1:2]
# UC from [-1, 1] to [0, 1]
max_dim_div = max_axis.max(dim=0, keepdims=True).values
uc = ((uc[..., 0] / max_dim_div + 1.0) * 0.5).clip(0, 1)
vc = ((vc[..., 0] / max_dim_div + 1.0) * 0.5).clip(0, 1)
uv = torch.stack([uc, vc], dim=-1)
return uv, index
def _assign_faces_uv_to_atlas_index(
vertex_positions: Float[Tensor, "Nv 3"],
triangle_idxs: Integer[Tensor, "Nf 3"],
face_uv: Float[Tensor, "Nf 3 2"],
face_index: Integer[Tensor, "Nf 3"],
) -> Integer[Tensor, "Nf"]: # noqa: F821
triangle_pos = vertex_positions[triangle_idxs]
# We need to do perform 3 overlap checks.
# The first set is placed in the upper two thirds of the UV atlas.
# Conceptually, this is the direct visible surfaces from the each cube side
# The second set is placed in the lower thirds and the left half of the UV atlas.
# This is the first set of occluded surfaces. They will also be saved in the projected fashion
# The third pass finds all non assigned faces. They will be placed in the bottom right half of
# the UV atlas in scattered fashion.
assign_idx = face_index.clone()
for overlap_step in range(3):
overlapping_indicator = torch.zeros_like(assign_idx, dtype=torch.bool)
for i in range(overlap_step * 6, (overlap_step + 1) * 6):
mask = assign_idx == i
if not mask.any():
continue
# Get all elements belonging to the projection face
uv_triangle = face_uv[mask]
cur_triangle_pos = triangle_pos[mask]
# Find the center of the uv coordinates
center_uv = uv_triangle.mean(dim=1, keepdim=True)
# And also the radius of the triangle
uv_triangle_radius = (uv_triangle - center_uv).norm(dim=-1).max(-1).values
potentially_overlapping_mask = (
# Find all close triangles
(center_uv[None, ...] - center_uv[:, None]).norm(dim=-1)
# Do not select the same element by offseting with an large valued identity matrix
+ torch.eye(
uv_triangle.shape[0],
device=uv_triangle.device,
dtype=uv_triangle.dtype,
).unsqueeze(-1)
* 1000
)
# Mark all potentially overlapping triangles to reduce the number of triangle intersection tests
potentially_overlapping_mask = (
potentially_overlapping_mask
<= (uv_triangle_radius.view(-1, 1, 1) * 3.0)
).squeeze(-1)
overlap_coords = torch.stack(torch.where(potentially_overlapping_mask), -1)
# Only unique triangles (A|B and B|A should be the same)
f = torch.min(overlap_coords, dim=-1).values
s = torch.max(overlap_coords, dim=-1).values
overlap_coords = torch.unique(torch.stack([f, s], dim=1), dim=0)
first, second = overlap_coords.unbind(-1)
# Get the triangles
tri_1 = uv_triangle[first]
tri_2 = uv_triangle[second]
# Perform the actual set with the reduced number of potentially overlapping triangles
its = triangle_intersection_2d(tri_1, tri_2, eps=1e-6)
# So we now need to detect which triangles are the occluded ones.
# We always assume the first to be the visible one (the others should move)
# In the previous step we use a lexigraphical sort to get the unique pairs
# In this we use a sort based on the orthographic projection
ax = 0 if i < 2 else 1 if i < 4 else 2
use_max = i % 2 == 1
tri1_c = cur_triangle_pos[first].mean(dim=1)
tri2_c = cur_triangle_pos[second].mean(dim=1)
mark_first = (
(tri1_c[..., ax] > tri2_c[..., ax])
if use_max
else (tri1_c[..., ax] < tri2_c[..., ax])
)
first[mark_first] = second[mark_first]
# Lastly the same index can be tested multiple times.
# If one marks it as overlapping we keep it marked as such.
# We do this by testing if it has been marked at least once.
unique_idx, rev_idx = torch.unique(first, return_inverse=True)
add = torch.zeros_like(unique_idx, dtype=torch.float32)
add.index_add_(0, rev_idx, its.float())
its_mask = add > 0
# And fill it in the overlapping indicator
idx = torch.where(mask)[0][unique_idx]
overlapping_indicator[idx] = its_mask
# Move the index to the overlap regions (shift by 6)
assign_idx[overlapping_indicator] += 6
# We do not care about the correct face placement after the first 2 slices
max_idx = 6 * 2
return assign_idx.clamp(0, max_idx)
def _find_slice_offset_and_scale(
index: Integer[Tensor, "Nf"], # noqa: F821
) -> Tuple[
Float[Tensor, "Nf"], Float[Tensor, "Nf"], Float[Tensor, "Nf"], Float[Tensor, "Nf"] # noqa: F821
]: # noqa: F821
# 6 due to the 6 cube faces
off = 1 / 3
dupl_off = 1 / 6
# Here, we need to decide how to pack the textures in the case of overlap
def x_offset_calc(x, i):
offset_calc = i // 6
# Initial coordinates - just 3x2 grid
if offset_calc == 0:
return off * x
else:
# Smaller 3x2 grid plus eventual shift to right for
# second overlap
return dupl_off * x + min(offset_calc - 1, 1) * 0.5
def y_offset_calc(x, i):
offset_calc = i // 6
# Initial coordinates - just a 3x2 grid
if offset_calc == 0:
return off * x
else:
# Smaller coordinates in the lowest row
return dupl_off * x + off * 2
offset_x = torch.zeros_like(index, dtype=torch.float32)
offset_y = torch.zeros_like(index, dtype=torch.float32)
offset_x_vals = [0, 1, 2, 0, 1, 2]
offset_y_vals = [0, 0, 0, 1, 1, 1]
for i in range(index.max().item() + 1):
mask = index == i
if not mask.any():
continue
offset_x[mask] = x_offset_calc(offset_x_vals[i % 6], i)
offset_y[mask] = y_offset_calc(offset_y_vals[i % 6], i)
div_x = torch.full_like(index, 6 // 2, dtype=torch.float32)
# All overlap elements are saved in half scale
div_x[index >= 6] = 6
div_y = div_x.clone() # Same for y
# Except for the random overlaps
div_x[index >= 12] = 2
# But the random overlaps are saved in a large block in the lower thirds
div_y[index >= 12] = 3
return offset_x, offset_y, div_x, div_y
def rotation_flip_matrix_2d(
rad: float, flip_x: bool = False, flip_y: bool = False
) -> Float[Tensor, "2 2"]:
cos = math.cos(rad)
sin = math.sin(rad)
rot_mat = torch.tensor([[cos, -sin], [sin, cos]], dtype=torch.float32)
flip_mat = torch.tensor(
[
[-1 if flip_x else 1, 0],
[0, -1 if flip_y else 1],
],
dtype=torch.float32,
)
return flip_mat @ rot_mat
def calculate_tangents(
vertex_positions: Float[Tensor, "Nv 3"],
vertex_normals: Float[Tensor, "Nv 3"],
triangle_idxs: Integer[Tensor, "Nf 3"],
face_uv: Float[Tensor, "Nf 3 2"],
) -> Float[Tensor, "Nf 3 4"]: # noqa: F821
vn_idx = [None] * 3
pos = [None] * 3
tex = face_uv.unbind(1)
for i in range(0, 3):
pos[i] = vertex_positions[triangle_idxs[:, i]]
# t_nrm_idx is always the same as t_pos_idx
vn_idx[i] = triangle_idxs[:, i]
tangents = torch.zeros_like(vertex_normals)
tansum = torch.zeros_like(vertex_normals)
# Compute tangent space for each triangle
duv1 = tex[1] - tex[0]
duv2 = tex[2] - tex[0]
dpos1 = pos[1] - pos[0]
dpos2 = pos[2] - pos[0]
tng_nom = dpos1 * duv2[..., 1:2] - dpos2 * duv1[..., 1:2]
denom = duv1[..., 0:1] * duv2[..., 1:2] - duv1[..., 1:2] * duv2[..., 0:1]
# Avoid division by zero for degenerated texture coordinates
denom_safe = denom.clip(1e-6)
tang = tng_nom / denom_safe
# Update all 3 vertices
for i in range(0, 3):
idx = vn_idx[i][:, None].repeat(1, 3)
tangents.scatter_add_(0, idx, tang) # tangents[n_i] = tangents[n_i] + tang
tansum.scatter_add_(
0, idx, torch.ones_like(tang)
) # tansum[n_i] = tansum[n_i] + 1
# Also normalize it. Here we do not normalize the individual triangles first so larger area
# triangles influence the tangent space more
tangents = tangents / tansum
# Normalize and make sure tangent is perpendicular to normal
tangents = F.normalize(tangents, dim=1)
tangents = F.normalize(tangents - dot(tangents, vertex_normals) * vertex_normals)
return tangents
def _rotate_uv_slices_consistent_space(
vertex_positions: Float[Tensor, "Nv 3"],
vertex_normals: Float[Tensor, "Nv 3"],
triangle_idxs: Integer[Tensor, "Nf 3"],
uv: Float[Tensor, "Nf 3 2"],
index: Integer[Tensor, "Nf"], # noqa: F821
):
tangents = calculate_tangents(vertex_positions, vertex_normals, triangle_idxs, uv)
pos_stack = torch.stack(
[
-vertex_positions[..., 1],
vertex_positions[..., 0],
torch.zeros_like(vertex_positions[..., 0]),
],
dim=-1,
)
expected_tangents = F.normalize(
torch.linalg.cross(
vertex_normals, torch.linalg.cross(pos_stack, vertex_normals)
),
-1,
)
actual_tangents = tangents[triangle_idxs]
expected_tangents = expected_tangents[triangle_idxs]
def rotation_matrix_2d(theta):
c, s = torch.cos(theta), torch.sin(theta)
return torch.tensor([[c, -s], [s, c]])
# Now find the rotation
index_mod = index % 6 # Shouldn't happen. Just for safety
for i in range(6):
mask = index_mod == i
if not mask.any():
continue
actual_mean_tangent = actual_tangents[mask].mean(dim=(0, 1))
expected_mean_tangent = expected_tangents[mask].mean(dim=(0, 1))
dot_product = torch.dot(actual_mean_tangent, expected_mean_tangent)
cross_product = (
actual_mean_tangent[0] * expected_mean_tangent[1]
- actual_mean_tangent[1] * expected_mean_tangent[0]
)
angle = torch.atan2(cross_product, dot_product)
rot_matrix = rotation_matrix_2d(angle).to(mask.device)
# Center the uv coordinate to be in the range of -1 to 1 and 0 centered
uv_cur = uv[mask] * 2 - 1 # Center it first
# Rotate it
uv[mask] = torch.einsum("ij,nfj->nfi", rot_matrix, uv_cur)
# Rescale uv[mask] to be within the 0-1 range
uv[mask] = (uv[mask] - uv[mask].min()) / (uv[mask].max() - uv[mask].min())
return uv
def _handle_slice_uvs(
uv: Float[Tensor, "Nf 3 2"],
index: Integer[Tensor, "Nf"], # noqa: F821
island_padding: float,
max_index: int = 6 * 2,
) -> Float[Tensor, "Nf 3 2"]: # noqa: F821
uc, vc = uv.unbind(-1)
# Get the second slice (The first overlap)
index_filter = [index == i for i in range(6, max_index)]
# Normalize them to always fully fill the atlas patch
for i, fi in enumerate(index_filter):
if fi.sum() > 0:
# Scale the slice but only up to a factor of 2
# This keeps the texture resolution with the first slice in line (Half space in UV)
uc[fi] = (uc[fi] - uc[fi].min()) / (uc[fi].max() - uc[fi].min()).clip(0.5)
vc[fi] = (vc[fi] - vc[fi].min()) / (vc[fi].max() - vc[fi].min()).clip(0.5)
uc_padded = (uc * (1 - 2 * island_padding) + island_padding).clip(0, 1)
vc_padded = (vc * (1 - 2 * island_padding) + island_padding).clip(0, 1)
return torch.stack([uc_padded, vc_padded], dim=-1)
def _handle_remaining_uvs(
uv: Float[Tensor, "Nf 3 2"],
index: Integer[Tensor, "Nf"], # noqa: F821
island_padding: float,
) -> Float[Tensor, "Nf 3 2"]:
uc, vc = uv.unbind(-1)
# Get all remaining elements
remaining_filter = index >= 6 * 2
squares_left = remaining_filter.sum()
if squares_left == 0:
return uv
uc = uc[remaining_filter]
vc = vc[remaining_filter]
# Or remaining triangles are distributed in a rectangle
# The rectangle takes 0.5 of the entire uv space in width and 1/3 in height
ratio = 0.5 * (1 / 3) # 1.5
# sqrt(744/(0.5*(1/3)))
mult = math.sqrt(squares_left / ratio)
num_square_width = int(math.ceil(0.5 * mult))
num_square_height = int(math.ceil(squares_left / num_square_width))
width = 1 / num_square_width
height = 1 / num_square_height
# The idea is again to keep the texture resolution consistent with the first slice
# This only occupys half the region in the texture chart but the scaling on the squares
# assumes full coverage.
clip_val = min(width, height) * 1.5
# Now normalize the UVs with taking into account the maximum scaling
uc = (uc - uc.min(dim=1, keepdim=True).values) / (
uc.amax(dim=1, keepdim=True) - uc.amin(dim=1, keepdim=True)
).clip(clip_val)
vc = (vc - vc.min(dim=1, keepdim=True).values) / (
vc.amax(dim=1, keepdim=True) - vc.amin(dim=1, keepdim=True)
).clip(clip_val)
# Add a small padding
uc = (
uc * (1 - island_padding * num_square_width * 0.5)
+ island_padding * num_square_width * 0.25
).clip(0, 1)
vc = (
vc * (1 - island_padding * num_square_height * 0.5)
+ island_padding * num_square_height * 0.25
).clip(0, 1)
uc = uc * width
vc = vc * height
# And calculate offsets for each element
idx = torch.arange(uc.shape[0], device=uc.device, dtype=torch.int32)
x_idx = idx % num_square_width
y_idx = idx // num_square_width
# And move each triangle to its own spot
uc = uc + x_idx[:, None] * width
vc = vc + y_idx[:, None] * height
uc = (uc * (1 - 2 * island_padding * 0.5) + island_padding * 0.5).clip(0, 1)
vc = (vc * (1 - 2 * island_padding * 0.5) + island_padding * 0.5).clip(0, 1)
uv[remaining_filter] = torch.stack([uc, vc], dim=-1)
return uv
def _distribute_individual_uvs_in_atlas(
face_uv: Float[Tensor, "Nf 3 2"],
assigned_faces: Integer[Tensor, "Nf"], # noqa: F821
offset_x: Float[Tensor, "Nf"], # noqa: F821
offset_y: Float[Tensor, "Nf"], # noqa: F821
div_x: Float[Tensor, "Nf"], # noqa: F821
div_y: Float[Tensor, "Nf"], # noqa: F821
island_padding: float,
):
# Place the slice first
placed_uv = _handle_slice_uvs(face_uv, assigned_faces, island_padding)
# Then handle the remaining overlap elements
placed_uv = _handle_remaining_uvs(placed_uv, assigned_faces, island_padding)
uc, vc = placed_uv.unbind(-1)
uc = uc / div_x[:, None] + offset_x[:, None]
vc = vc / div_y[:, None] + offset_y[:, None]
uv = torch.stack([uc, vc], dim=-1).view(-1, 2)
return uv
def _get_unique_face_uv(
uv: Float[Tensor, "Nf 3 2"],
) -> Tuple[Float[Tensor, "Utex 3"], Integer[Tensor, "Nf"]]: # noqa: F821
unique_uv, unique_idx = torch.unique(uv, return_inverse=True, dim=0)
# And add the face to uv index mapping
vtex_idx = unique_idx.view(-1, 3)
return unique_uv, vtex_idx
def _align_mesh_with_main_axis(
vertex_positions: Float[Tensor, "Nv 3"], vertex_normals: Float[Tensor, "Nv 3"]
) -> Tuple[Float[Tensor, "Nv 3"], Float[Tensor, "Nv 3"]]:
# Use pca to find the 2 main axis (third is derived by cross product)
# Set the random seed so it's repeatable
torch.manual_seed(0)
_, _, v = torch.pca_lowrank(vertex_positions, q=2)
main_axis, seconday_axis = v[:, 0], v[:, 1]
main_axis: Float[Tensor, "3"] = F.normalize(main_axis, eps=1e-6, dim=-1)
# Orthogonalize the second axis
seconday_axis: Float[Tensor, "3"] = F.normalize(
seconday_axis - dot(seconday_axis, main_axis) * main_axis, eps=1e-6, dim=-1
)
# Create perpendicular third axis
third_axis: Float[Tensor, "3"] = F.normalize(
torch.cross(main_axis, seconday_axis), dim=-1, eps=1e-6
)
# Check to which canonical axis each aligns
main_axis_max_idx = main_axis.abs().argmax().item()
seconday_axis_max_idx = seconday_axis.abs().argmax().item()
third_axis_max_idx = third_axis.abs().argmax().item()
# Now sort the axes based on the argmax so they align with thecanonoical axes
# If two axes have the same argmax move one of them
all_possible_axis = {0, 1, 2}
cur_index = 1
while len(set([main_axis_max_idx, seconday_axis_max_idx, third_axis_max_idx])) != 3:
# Find missing axis
missing_axis = all_possible_axis - set(
[main_axis_max_idx, seconday_axis_max_idx, third_axis_max_idx]
)
missing_axis = missing_axis.pop()
# Just assign it to third axis as it had the smallest contribution to the
# overall shape
if cur_index == 1:
third_axis_max_idx = missing_axis
elif cur_index == 2:
seconday_axis_max_idx = missing_axis
else:
raise ValueError("Could not find 3 unique axis")
cur_index += 1
if len({main_axis_max_idx, seconday_axis_max_idx, third_axis_max_idx}) != 3:
raise ValueError("Could not find 3 unique axis")
axes = [None] * 3
axes[main_axis_max_idx] = main_axis
axes[seconday_axis_max_idx] = seconday_axis
axes[third_axis_max_idx] = third_axis
# Create rotation matrix from the individual axes
rot_mat = torch.stack(axes, dim=1).T
# Now rotate the vertex positions and vertex normals so the mesh aligns with the main axis
vertex_positions = torch.einsum("ij,nj->ni", rot_mat, vertex_positions)
vertex_normals = torch.einsum("ij,nj->ni", rot_mat, vertex_normals)
return vertex_positions, vertex_normals
def box_projection_uv_unwrap(
vertex_positions: Float[Tensor, "Nv 3"],
vertex_normals: Float[Tensor, "Nv 3"],
triangle_idxs: Integer[Tensor, "Nf 3"],
island_padding: float,
) -> Tuple[Float[Tensor, "Utex 3"], Integer[Tensor, "Nf"]]: # noqa: F821
# Align the mesh with main axis directions first
vertex_positions, vertex_normals = _align_mesh_with_main_axis(
vertex_positions, vertex_normals
)
bbox: Float[Tensor, "2 3"] = torch.stack(
[vertex_positions.min(dim=0).values, vertex_positions.max(dim=0).values], dim=0
)
# First decide in which cube face the triangle is placed
face_uv, face_index = _box_assign_vertex_to_cube_face(
vertex_positions, vertex_normals, triangle_idxs, bbox
)
# Rotate the UV islands in a way that they align with the radial z tangent space
face_uv = _rotate_uv_slices_consistent_space(
vertex_positions, vertex_normals, triangle_idxs, face_uv, face_index
)
# Then find where where the face is placed in the atlas.
# This has to detect potential overlaps
assigned_atlas_index = _assign_faces_uv_to_atlas_index(
vertex_positions, triangle_idxs, face_uv, face_index
)
# Then figure out the final place in the atlas based on the assignment
offset_x, offset_y, div_x, div_y = _find_slice_offset_and_scale(
assigned_atlas_index
)
# Next distribute the faces in the uv atlas
placed_uv = _distribute_individual_uvs_in_atlas(
face_uv, assigned_atlas_index, offset_x, offset_y, div_x, div_y, island_padding
)
# And get the unique per-triangle UV coordinates
return _get_unique_face_uv(placed_uv)
|