File size: 46,239 Bytes
d945eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
# coding=utf-8
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch DINOv2 model."""

import collections.abc
import math
from dataclasses import dataclass
from typing import Dict, List, Optional, Set, Tuple, Union

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
    BackboneOutput,
    BaseModelOutput,
    BaseModelOutputWithPooling,
    ImageClassifierOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.models.dinov2.configuration_dinov2 import Dinov2Config
from transformers.pytorch_utils import (
    find_pruneable_heads_and_indices,
    prune_linear_layer,
)
from transformers.utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from transformers.utils.backbone_utils import BackboneMixin

logger = logging.get_logger(__name__)

# General docstring
_CONFIG_FOR_DOC = "Dinov2Config"

# Base docstring
_CHECKPOINT_FOR_DOC = "facebook/dinov2-base"
_EXPECTED_OUTPUT_SHAPE = [1, 257, 768]

# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "facebook/dinov2-base"


DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "facebook/dinov2-base",
    # See all DINOv2 models at https://huggingface.co/models?filter=dinov2
]


class Dinov2Embeddings(nn.Module):
    """
    Construct the CLS token, mask token, position and patch embeddings.
    """

    def __init__(self, config: Dinov2Config) -> None:
        super().__init__()

        self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size))
        # register as mask token as it's not used in optimization
        # to avoid the use of find_unused_parameters_true
        # self.mask_token = nn.Parameter(torch.zeros(1, config.hidden_size))
        self.register_buffer("mask_token", torch.zeros(1, config.hidden_size))
        self.patch_embeddings = Dinov2PatchEmbeddings(config)
        num_patches = self.patch_embeddings.num_patches
        self.position_embeddings = nn.Parameter(
            torch.randn(1, num_patches + 1, config.hidden_size)
        )
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.config = config

    def interpolate_pos_encoding(
        self, embeddings: torch.Tensor, height: int, width: int
    ) -> torch.Tensor:
        """
        This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
        resolution images.

        Source:
        https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
        """

        num_patches = embeddings.shape[1] - 1
        num_positions = self.position_embeddings.shape[1] - 1
        if num_patches == num_positions and height == width:
            return self.position_embeddings
        class_pos_embed = self.position_embeddings[:, 0]
        patch_pos_embed = self.position_embeddings[:, 1:]
        dim = embeddings.shape[-1]
        height = height // self.config.patch_size
        width = width // self.config.patch_size
        # we add a small number to avoid floating point error in the interpolation
        # see discussion at https://github.com/facebookresearch/dino/issues/8
        height, width = height + 0.1, width + 0.1
        patch_pos_embed = patch_pos_embed.reshape(
            1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim
        )
        patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
        patch_pos_embed = nn.functional.interpolate(
            patch_pos_embed,
            scale_factor=(
                height / math.sqrt(num_positions),
                width / math.sqrt(num_positions),
            ),
            mode="bicubic",
            align_corners=False,
        )
        if (
            int(height) != patch_pos_embed.shape[-2]
            or int(width) != patch_pos_embed.shape[-1]
        ):
            raise ValueError(
                "Width or height does not match with the interpolated position embeddings"
            )
        patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
        return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)

    def forward(
        self,
        pixel_values: torch.Tensor,
        bool_masked_pos: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        batch_size, _, height, width = pixel_values.shape
        patch_embeddings = self.patch_embeddings(pixel_values)
        embeddings = patch_embeddings

        if bool_masked_pos is not None:
            embeddings = torch.where(
                bool_masked_pos.unsqueeze(-1),
                self.mask_token.to(embeddings.dtype).unsqueeze(0),
                embeddings,
            )

        # add the [CLS] token to the embedded patch tokens
        cls_tokens = self.cls_token.expand(batch_size, -1, -1)
        embeddings = torch.cat((cls_tokens, embeddings), dim=1)

        # add positional encoding to each token
        embeddings = embeddings + self.interpolate_pos_encoding(
            embeddings, height, width
        )

        embeddings = self.dropout(embeddings)

        return embeddings


class Dinov2PatchEmbeddings(nn.Module):
    """
    This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
    `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
    Transformer.
    """

    def __init__(self, config):
        super().__init__()
        image_size, patch_size = config.image_size, config.patch_size
        num_channels, hidden_size = config.num_channels, config.hidden_size

        image_size = (
            image_size
            if isinstance(image_size, collections.abc.Iterable)
            else (image_size, image_size)
        )
        patch_size = (
            patch_size
            if isinstance(patch_size, collections.abc.Iterable)
            else (patch_size, patch_size)
        )
        num_patches = (image_size[1] // patch_size[1]) * (
            image_size[0] // patch_size[0]
        )
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.num_patches = num_patches

        self.projection = nn.Conv2d(
            num_channels, hidden_size, kernel_size=patch_size, stride=patch_size
        )

    def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
        """
        num_channels = pixel_values.shape[1]
        if num_channels != self.num_channels:
            raise ValueError(
                "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
                f" Expected {self.num_channels} but got {num_channels}."
            )
        """
        embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
        return embeddings


# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->Dinov2
class Dinov2SelfAttention(nn.Module):
    def __init__(self, config: Dinov2Config) -> None:
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
            config, "embedding_size"
        ):
            raise ValueError(
                f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
                f"heads {config.num_attention_heads}."
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size
        self.attention_probs_dropout_prob = config.attention_probs_dropout_prob

        self.query = nn.Linear(
            config.hidden_size, self.all_head_size, bias=config.qkv_bias
        )
        self.key = nn.Linear(
            config.hidden_size, self.all_head_size, bias=config.qkv_bias
        )
        self.value = nn.Linear(
            config.hidden_size, self.all_head_size, bias=config.qkv_bias
        )

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
        new_x_shape = x.size()[:-1] + (
            self.num_attention_heads,
            self.attention_head_size,
        )
        x = x.view(new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
        mixed_query_layer = self.query(hidden_states)

        if hasattr(F, "scaled_dot_product_attention"):
            assert head_mask is None and not output_attentions
            new_size = hidden_states.size()[:-1] + (
                self.num_attention_heads,
                self.attention_head_size,
            )
            key_layer = self.key(hidden_states).reshape(new_size).transpose(1, 2)
            value_layer = self.value(hidden_states).reshape(new_size).transpose(1, 2)
            query_layer = mixed_query_layer.reshape(new_size).transpose(1, 2)
            context_layer = F.scaled_dot_product_attention(
                query_layer,
                key_layer,
                value_layer,
                dropout_p=self.attention_probs_dropout_prob,
                is_causal=False,
            )
            context_layer = context_layer.transpose(1, 2).reshape(
                *hidden_states.size()[:-1], -1
            )
        else:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))
            query_layer = self.transpose_for_scores(mixed_query_layer)

            # Take the dot product between "query" and "key" to get the raw attention scores.
            attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

            attention_scores = attention_scores / math.sqrt(self.attention_head_size)

            # Normalize the attention scores to probabilities.
            attention_probs = nn.functional.softmax(attention_scores, dim=-1)

            # This is actually dropping out entire tokens to attend to, which might
            # seem a bit unusual, but is taken from the original Transformer paper.
            attention_probs = self.dropout(attention_probs)

            # Mask heads if we want to
            if head_mask is not None:
                attention_probs = attention_probs * head_mask

            context_layer = torch.matmul(attention_probs, value_layer)

            context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
            new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
            context_layer = context_layer.view(new_context_layer_shape)

        outputs = (
            (context_layer, attention_probs) if output_attentions else (context_layer,)
        )

        return outputs


# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Dinov2
class Dinov2SelfOutput(nn.Module):
    """
    The residual connection is defined in Dinov2Layer instead of here (as is the case with other models), due to the
    layernorm applied before each block.
    """

    def __init__(self, config: Dinov2Config) -> None:
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(
        self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
    ) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)

        return hidden_states


# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->Dinov2
class Dinov2Attention(nn.Module):
    def __init__(self, config: Dinov2Config) -> None:
        super().__init__()
        self.attention = Dinov2SelfAttention(config)
        self.output = Dinov2SelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads: Set[int]) -> None:
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads,
            self.attention.num_attention_heads,
            self.attention.attention_head_size,
            self.pruned_heads,
        )

        # Prune linear layers
        self.attention.query = prune_linear_layer(self.attention.query, index)
        self.attention.key = prune_linear_layer(self.attention.key, index)
        self.attention.value = prune_linear_layer(self.attention.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.attention.num_attention_heads = self.attention.num_attention_heads - len(
            heads
        )
        self.attention.all_head_size = (
            self.attention.attention_head_size * self.attention.num_attention_heads
        )
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states: torch.Tensor,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
        self_outputs = self.attention(hidden_states, head_mask, output_attentions)

        attention_output = self.output(self_outputs[0], hidden_states)

        outputs = (attention_output,) + self_outputs[
            1:
        ]  # add attentions if we output them
        return outputs


class Dinov2LayerScale(nn.Module):
    def __init__(self, config) -> None:
        super().__init__()
        self.lambda1 = nn.Parameter(
            config.layerscale_value * torch.ones(config.hidden_size)
        )

    def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
        return hidden_state * self.lambda1


# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(
    input: torch.Tensor, drop_prob: float = 0.0, training: bool = False
) -> torch.Tensor:
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
    however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
    layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
    argument.
    """
    if drop_prob == 0.0 or not training:
        return input
    keep_prob = 1 - drop_prob
    shape = (input.shape[0],) + (1,) * (
        input.ndim - 1
    )  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(
        shape, dtype=input.dtype, device=input.device
    )
    random_tensor.floor_()  # binarize
    output = input.div(keep_prob) * random_tensor
    return output


# Copied from transformers.models.beit.modeling_beit.BeitDropPath
class Dinov2DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""

    def __init__(self, drop_prob: Optional[float] = None) -> None:
        super().__init__()
        self.drop_prob = drop_prob

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        return drop_path(hidden_states, self.drop_prob, self.training)

    def extra_repr(self) -> str:
        return "p={}".format(self.drop_prob)


class Dinov2MLP(nn.Module):
    def __init__(self, config) -> None:
        super().__init__()
        in_features = out_features = config.hidden_size
        hidden_features = int(config.hidden_size * config.mlp_ratio)
        self.fc1 = nn.Linear(in_features, hidden_features, bias=True)
        if isinstance(config.hidden_act, str):
            self.activation = ACT2FN[config.hidden_act]
        else:
            self.activation = config.hidden_act
        self.fc2 = nn.Linear(hidden_features, out_features, bias=True)

    def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
        hidden_state = self.fc1(hidden_state)
        hidden_state = self.activation(hidden_state)
        hidden_state = self.fc2(hidden_state)
        return hidden_state


class Dinov2SwiGLUFFN(nn.Module):
    def __init__(self, config) -> None:
        super().__init__()
        in_features = out_features = config.hidden_size
        hidden_features = int(config.hidden_size * config.mlp_ratio)
        hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8

        self.weights_in = nn.Linear(in_features, 2 * hidden_features, bias=True)
        self.weights_out = nn.Linear(hidden_features, out_features, bias=True)

    def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
        hidden_state = self.weights_in(hidden_state)
        x1, x2 = hidden_state.chunk(2, dim=-1)
        hidden = nn.functional.silu(x1) * x2
        return self.weights_out(hidden)


class Dinov2Layer(nn.Module):
    """This corresponds to the Block class in the original implementation."""

    def __init__(self, config: Dinov2Config) -> None:
        super().__init__()

        self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.norm1_modulation = None
        self.attention = Dinov2Attention(config)
        self.layer_scale1 = Dinov2LayerScale(config)
        self.drop_path1 = (
            Dinov2DropPath(config.drop_path_rate)
            if config.drop_path_rate > 0.0
            else nn.Identity()
        )

        self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.norm2_modulation = None

        if config.use_swiglu_ffn:
            self.mlp = Dinov2SwiGLUFFN(config)
        else:
            self.mlp = Dinov2MLP(config)
        self.layer_scale2 = Dinov2LayerScale(config)
        self.drop_path2 = (
            Dinov2DropPath(config.drop_path_rate)
            if config.drop_path_rate > 0.0
            else nn.Identity()
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        head_mask: Optional[torch.Tensor] = None,
        modulation_cond: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
        hidden_states_norm = self.norm1(hidden_states)
        if self.norm1_modulation is not None:
            assert modulation_cond is not None
            hidden_states_norm = self.norm1_modulation(
                hidden_states_norm, modulation_cond
            )
        self_attention_outputs = self.attention(
            hidden_states_norm,  # in Dinov2, layernorm is applied before self-attention
            head_mask,
            output_attentions=output_attentions,
        )
        attention_output = self_attention_outputs[0]

        attention_output = self.layer_scale1(attention_output)
        outputs = self_attention_outputs[
            1:
        ]  # add self attentions if we output attention weights

        # first residual connection
        hidden_states = attention_output + hidden_states

        # in Dinov2, layernorm is also applied after self-attention
        layer_output = self.norm2(hidden_states)
        if self.norm2_modulation is not None:
            assert modulation_cond is not None
            layer_output = self.norm2_modulation(layer_output, modulation_cond)
        layer_output = self.mlp(layer_output)
        layer_output = self.layer_scale2(layer_output)

        # second residual connection
        layer_output = layer_output + hidden_states

        outputs = (layer_output,) + outputs

        return outputs

    def register_ada_norm_modulation(self, norm1_mod: nn.Module, norm2_mod: nn.Module):
        self.norm1_modulation = norm1_mod
        self.norm2_modulation = norm2_mod


# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->Dinov2
class Dinov2Encoder(nn.Module):
    def __init__(self, config: Dinov2Config) -> None:
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList(
            [Dinov2Layer(config) for _ in range(config.num_hidden_layers)]
        )
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        head_mask: Optional[torch.Tensor] = None,
        modulation_cond: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
    ) -> Union[tuple, BaseModelOutput]:
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None

            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    layer_head_mask,
                    modulation_cond,
                    use_reentrant=False,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states, layer_head_mask, modulation_cond, output_attentions
                )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, all_hidden_states, all_self_attentions]
                if v is not None
            )
        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


class Dinov2PreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = Dinov2Config
    base_model_prefix = "dinov2"
    main_input_name = "pixel_values"
    supports_gradient_checkpointing = True

    def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
        """Initialize the weights"""
        if isinstance(module, (nn.Linear, nn.Conv2d)):
            # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
            # `trunc_normal_cpu` not implemented in `half` issues
            module.weight.data = nn.init.trunc_normal_(
                module.weight.data.to(torch.float32),
                mean=0.0,
                std=self.config.initializer_range,
            ).to(module.weight.dtype)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, Dinov2Embeddings):
            module.position_embeddings.data = nn.init.trunc_normal_(
                module.position_embeddings.data.to(torch.float32),
                mean=0.0,
                std=self.config.initializer_range,
            ).to(module.position_embeddings.dtype)

            module.cls_token.data = nn.init.trunc_normal_(
                module.cls_token.data.to(torch.float32),
                mean=0.0,
                std=self.config.initializer_range,
            ).to(module.cls_token.dtype)

    def _set_gradient_checkpointing(
        self, module: Dinov2Encoder, value: bool = False
    ) -> None:
        if isinstance(module, Dinov2Encoder):
            module.gradient_checkpointing = value


DINOV2_START_DOCSTRING = r"""
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
    as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`Dinov2Config`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

DINOV2_BASE_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
            [`BitImageProcessor.preprocess`] for details.

        bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`):
            Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Only relevant for
            pre-training.

        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""

DINOV2_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
            [`BitImageProcessor.preprocess`] for details.

        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@dataclass
class CustomBaseModelOutputWithPooling(BaseModelOutputWithPooling):
    patch_embeddings: Optional[torch.FloatTensor] = None


@add_start_docstrings(
    "The bare DINOv2 Model transformer outputting raw hidden-states without any specific head on top.",
    DINOV2_START_DOCSTRING,
)
class Dinov2Model(Dinov2PreTrainedModel):
    def __init__(self, config: Dinov2Config):
        super().__init__(config)
        self.config = config

        self.embeddings = Dinov2Embeddings(config)
        self.encoder = Dinov2Encoder(config)

        self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self) -> Dinov2PatchEmbeddings:
        return self.embeddings.patch_embeddings

    def expand_input_channels(self, extra_input_channels: int) -> None:
        if extra_input_channels == 0:
            return
        conv_old = self.embeddings.patch_embeddings.projection
        conv_new = nn.Conv2d(
            self.config.num_channels + extra_input_channels,
            self.config.hidden_size,
            kernel_size=self.config.patch_size,
            stride=self.config.patch_size,
        ).to(self.device)
        with torch.no_grad():
            conv_new.weight[:, :3] = conv_old.weight
            conv_new.bias = conv_old.bias
        self.embeddings.patch_embeddings.projection = conv_new
        del conv_old

    def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    @add_start_docstrings_to_model_forward(DINOV2_BASE_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutputWithPooling,
        config_class=_CONFIG_FOR_DOC,
        modality="vision",
        expected_output=_EXPECTED_OUTPUT_SHAPE,
    )
    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        bool_masked_pos: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        modulation_cond: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPooling]:
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        embedding_output = self.embeddings(
            pixel_values, bool_masked_pos=bool_masked_pos
        )

        encoder_outputs = self.encoder(
            embedding_output,
            head_mask=head_mask,
            modulation_cond=modulation_cond,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]
        sequence_output = self.layernorm(sequence_output)
        pooled_output = sequence_output[:, 0, :]

        if not return_dict:
            head_outputs = (sequence_output, pooled_output)
            return head_outputs + encoder_outputs[1:]

        return CustomBaseModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
            patch_embeddings=embedding_output,
        )

    def set_gradient_checkpointing(self, value: bool = False) -> None:
        self._set_gradient_checkpointing(self.encoder, value)


@add_start_docstrings(
    """
    Dinov2 Model transformer with an image classification head on top (a linear layer on top of the final hidden state
    of the [CLS] token) e.g. for ImageNet.
    """,
    DINOV2_START_DOCSTRING,
)
class Dinov2ForImageClassification(Dinov2PreTrainedModel):
    def __init__(self, config: Dinov2Config) -> None:
        super().__init__(config)

        self.num_labels = config.num_labels
        self.dinov2 = Dinov2Model(config)

        # Classifier head
        self.classifier = (
            nn.Linear(config.hidden_size * 2, config.num_labels)
            if config.num_labels > 0
            else nn.Identity()
        )

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_IMAGE_CLASS_CHECKPOINT,
        output_type=ImageClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[tuple, ImageClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        outputs = self.dinov2(
            pixel_values,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]  # batch_size, sequence_length, hidden_size

        cls_token = sequence_output[:, 0]
        patch_tokens = sequence_output[:, 1:]

        linear_input = torch.cat([cls_token, patch_tokens.mean(dim=1)], dim=1)

        logits = self.classifier(linear_input)

        loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (
                    labels.dtype == torch.long or labels.dtype == torch.int
                ):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return ImageClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
    Dinov2 backbone, to be used with frameworks like DETR and MaskFormer.
    """,
    DINOV2_START_DOCSTRING,
)
class Dinov2Backbone(Dinov2PreTrainedModel, BackboneMixin):
    def __init__(self, config):
        super().__init__(config)
        super()._init_backbone(config)

        self.num_features = [
            config.hidden_size for _ in range(config.num_hidden_layers + 1)
        ]
        self.embeddings = Dinov2Embeddings(config)
        self.encoder = Dinov2Encoder(config)

        self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self) -> Dinov2PatchEmbeddings:
        return self.embeddings.patch_embeddings

    @add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        pixel_values: torch.Tensor,
        output_hidden_states: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> BackboneOutput:
        """
        Returns:

        Examples:

        ```python
        >>> from transformers import AutoImageProcessor, AutoBackbone
        >>> import torch
        >>> from PIL import Image
        >>> import requests

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
        >>> model = AutoBackbone.from_pretrained(
        ...     "facebook/dinov2-base", out_features=["stage2", "stage5", "stage8", "stage11"]
        ... )

        >>> inputs = processor(image, return_tensors="pt")

        >>> outputs = model(**inputs)
        >>> feature_maps = outputs.feature_maps
        >>> list(feature_maps[-1].shape)
        [1, 768, 16, 16]
        ```"""
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )

        embedding_output = self.embeddings(pixel_values)

        outputs = self.encoder(
            embedding_output,
            output_hidden_states=True,
            output_attentions=output_attentions,
            return_dict=return_dict,
        )

        hidden_states = outputs.hidden_states if return_dict else outputs[1]

        feature_maps = ()
        for stage, hidden_state in zip(self.stage_names, hidden_states):
            if stage in self.out_features:
                if self.config.apply_layernorm:
                    hidden_state = self.layernorm(hidden_state)
                if self.config.reshape_hidden_states:
                    batch_size, _, height, width = pixel_values.shape
                    patch_size = self.config.patch_size
                    hidden_state = hidden_state[:, 1:, :].reshape(
                        batch_size, width // patch_size, height // patch_size, -1
                    )
                    hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
                feature_maps += (hidden_state,)

        if not return_dict:
            if output_hidden_states:
                output = (feature_maps,) + outputs[1:]
            else:
                output = (feature_maps,) + outputs[2:]
            return output

        return BackboneOutput(
            feature_maps=feature_maps,
            hidden_states=outputs.hidden_states if output_hidden_states else None,
            attentions=outputs.attentions if output_attentions else None,
        )


class CustomPatchEmbeddings(nn.Module):
    """
    This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
    `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
    Transformer.
    """

    def __init__(
        self, image_size: int, patch_size: int, num_channels: int, hidden_size: int
    ):
        super().__init__()

        image_size = (
            image_size
            if isinstance(image_size, collections.abc.Iterable)
            else (image_size, image_size)
        )
        patch_size = (
            patch_size
            if isinstance(patch_size, collections.abc.Iterable)
            else (patch_size, patch_size)
        )
        num_patches = (image_size[1] // patch_size[1]) * (
            image_size[0] // patch_size[0]
        )
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.num_patches = num_patches

        self.projection = nn.Conv2d(
            num_channels, hidden_size, kernel_size=patch_size, stride=patch_size
        )

    def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
        num_channels = pixel_values.shape[1]
        if num_channels != self.num_channels:
            raise ValueError(
                "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
                f" Expected {self.num_channels} but got {num_channels}."
            )
        embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
        return embeddings


class CustomEmbeddings(nn.Module):
    """
    Construct the CLS token, mask token, position and patch embeddings.
    """

    def __init__(
        self, image_size: int, patch_size: int, num_channels: int, hidden_size: int
    ) -> None:
        super().__init__()

        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.hidden_size = hidden_size

        self.cls_token = nn.Parameter(torch.randn(1, 1, self.hidden_size))

        self.patch_embeddings = CustomPatchEmbeddings(
            image_size, patch_size, num_channels, hidden_size
        )
        num_patches = self.patch_embeddings.num_patches
        self.position_embeddings = nn.Parameter(
            torch.randn(1, num_patches + 1, self.hidden_size)
        )

    def interpolate_pos_encoding(
        self, embeddings: torch.Tensor, height: int, width: int
    ) -> torch.Tensor:
        """
        This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
        resolution images.

        Source:
        https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
        """

        num_patches = embeddings.shape[1] - 1
        num_positions = self.position_embeddings.shape[1] - 1
        if num_patches == num_positions and height == width:
            return self.position_embeddings
        class_pos_embed = self.position_embeddings[:, 0]
        patch_pos_embed = self.position_embeddings[:, 1:]
        dim = embeddings.shape[-1]
        height = height // self.patch_size
        width = width // self.patch_size
        # we add a small number to avoid floating point error in the interpolation
        # see discussion at https://github.com/facebookresearch/dino/issues/8
        height, width = height + 0.1, width + 0.1
        patch_pos_embed = patch_pos_embed.reshape(
            1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim
        )
        patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
        patch_pos_embed = nn.functional.interpolate(
            patch_pos_embed,
            scale_factor=(
                height / math.sqrt(num_positions),
                width / math.sqrt(num_positions),
            ),
            mode="bicubic",
            align_corners=False,
        )
        if (
            int(height) != patch_pos_embed.shape[-2]
            or int(width) != patch_pos_embed.shape[-1]
        ):
            raise ValueError(
                "Width or height does not match with the interpolated position embeddings"
            )
        patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
        return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)

    def forward(
        self,
        pixel_values: torch.Tensor,
    ) -> torch.Tensor:
        batch_size, _, height, width = pixel_values.shape
        patch_embeddings = self.patch_embeddings(pixel_values)
        embeddings = patch_embeddings

        # add the [CLS] token to the embedded patch tokens
        cls_tokens = self.cls_token.expand(batch_size, -1, -1)
        embeddings = torch.cat((cls_tokens, embeddings), dim=1)

        # add positional encoding to each token
        embeddings = embeddings + self.interpolate_pos_encoding(
            embeddings, height, width
        )

        return embeddings