Spaces:
Sleeping
Sleeping
_base_ = [ | |
'../../_base_/default_runtime.py', | |
'../../_base_/recog_pipelines/crnn_pipeline.py', | |
'../../_base_/recog_datasets/toy_data.py', | |
'../../_base_/schedules/schedule_adadelta_5e.py' | |
] | |
label_convertor = dict( | |
type='CTCConvertor', dict_type='DICT36', with_unknown=True, lower=True) | |
model = dict( | |
type='CRNNNet', | |
preprocessor=None, | |
backbone=dict(type='VeryDeepVgg', leaky_relu=False, input_channels=1), | |
encoder=None, | |
decoder=dict(type='CRNNDecoder', in_channels=512, rnn_flag=True), | |
loss=dict(type='CTCLoss'), | |
label_convertor=label_convertor, | |
pretrained=None) | |
train_list = {{_base_.train_list}} | |
test_list = {{_base_.test_list}} | |
train_pipeline = {{_base_.train_pipeline}} | |
test_pipeline = {{_base_.test_pipeline}} | |
data = dict( | |
samples_per_gpu=32, | |
workers_per_gpu=2, | |
val_dataloader=dict(samples_per_gpu=1), | |
test_dataloader=dict(samples_per_gpu=1), | |
train=dict( | |
type='UniformConcatDataset', | |
datasets=train_list, | |
pipeline=train_pipeline), | |
val=dict( | |
type='UniformConcatDataset', | |
datasets=test_list, | |
pipeline=test_pipeline), | |
test=dict( | |
type='UniformConcatDataset', | |
datasets=test_list, | |
pipeline=test_pipeline)) | |
evaluation = dict(interval=1, metric='acc') | |
cudnn_benchmark = True | |