Spaces:
Sleeping
Sleeping
_base_ = [ | |
'../../_base_/default_runtime.py', | |
'../../_base_/recog_pipelines/satrn_pipeline.py', | |
'../../_base_/recog_datasets/ST_MJ_train.py', | |
'../../_base_/recog_datasets/academic_test.py' | |
] | |
train_list = {{_base_.train_list}} | |
test_list = {{_base_.test_list}} | |
train_pipeline = {{_base_.train_pipeline}} | |
test_pipeline = {{_base_.test_pipeline}} | |
label_convertor = dict( | |
type='AttnConvertor', dict_type='DICT90', with_unknown=True) | |
model = dict( | |
type='SATRN', | |
backbone=dict(type='ShallowCNN', input_channels=3, hidden_dim=512), | |
encoder=dict( | |
type='SatrnEncoder', | |
n_layers=12, | |
n_head=8, | |
d_k=512 // 8, | |
d_v=512 // 8, | |
d_model=512, | |
n_position=100, | |
d_inner=512 * 4, | |
dropout=0.1), | |
decoder=dict( | |
type='NRTRDecoder', | |
n_layers=6, | |
d_embedding=512, | |
n_head=8, | |
d_model=512, | |
d_inner=512 * 4, | |
d_k=512 // 8, | |
d_v=512 // 8), | |
loss=dict(type='TFLoss'), | |
label_convertor=label_convertor, | |
max_seq_len=25) | |
# optimizer | |
optimizer = dict(type='Adam', lr=3e-4) | |
optimizer_config = dict(grad_clip=None) | |
# learning policy | |
lr_config = dict(policy='step', step=[3, 4]) | |
total_epochs = 6 | |
data = dict( | |
samples_per_gpu=64, | |
workers_per_gpu=4, | |
val_dataloader=dict(samples_per_gpu=1), | |
test_dataloader=dict(samples_per_gpu=1), | |
train=dict( | |
type='UniformConcatDataset', | |
datasets=train_list, | |
pipeline=train_pipeline), | |
val=dict( | |
type='UniformConcatDataset', | |
datasets=test_list, | |
pipeline=test_pipeline), | |
test=dict( | |
type='UniformConcatDataset', | |
datasets=test_list, | |
pipeline=test_pipeline)) | |
evaluation = dict(interval=1, metric='acc') | |