Spaces:
Runtime error
Runtime error
File size: 6,862 Bytes
7453da0 c657020 9738ed3 540056e e8fd75c 5301c9c 540056e 00856ac 5301c9c e8fd75c 540056e d6695b2 e8fd75c 540056e 5301c9c a2c09c5 5301c9c a15b3ce 99bd104 c657020 5e6dba7 9738ed3 55e712f 9738ed3 c657020 a15b3ce bf18300 a15b3ce bf18300 a15b3ce bf18300 a15b3ce 9738ed3 540056e cf39162 0a67e21 396214f c93d85e 396214f 80aa4e5 508045d 9e731de 508045d 455006b aef38d7 455006b efc72c4 508045d fc0768e 508045d 540056e 00856ac 540056e e8fd75c f7b9ef5 e8fd75c 20fea69 508045d e8fd75c 508045d 80aa4e5 aef38d7 396214f e8fd75c c93d85e 508045d aef38d7 b9bed89 9375fef b9bed89 aef38d7 b9bed89 776a974 5bddbaf 396214f 5bddbaf 396214f 776a974 306eb01 51691ec a72a83f 306eb01 e0b6034 a2c4d07 306eb01 5bddbaf 6a3a19b 306eb01 b9bed89 5bddbaf b9bed89 17ba671 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import gradio as gr
import json
import re
from gradio_client import Client
#fusecap_client = Client("https://noamrot-fusecap-image-captioning.hf.space/")
#fuyu_client = Client("https://adept-fuyu-8b-demo.hf.space/")
kosmos2_client = Client("https://ydshieh-kosmos-2.hf.space/")
def get_caption(image_in):
"""
fuyu_result = fuyu_client.predict(
image_in, # str representing input in 'raw_image' Image component
True, # bool in 'Enable detailed captioning' Checkbox component
fn_index=2
)
"""
kosmos2_result = kosmos2_client.predict(
image_in, # str (filepath or URL to image) in 'Test Image' Image component
"Detailed", # str in 'Description Type' Radio component
fn_index=4
)
print(f"KOSMOS2 RETURNS: {kosmos2_result}")
with open(kosmos2_result[1], 'r') as f:
data = json.load(f)
reconstructed_sentence = []
for sublist in data:
reconstructed_sentence.append(sublist[0])
full_sentence = ' '.join(reconstructed_sentence)
#print(full_sentence)
# Find the pattern matching the expected format ("Describe this image in detail:" followed by optional space and then the rest)...
pattern = r'^Describe this image in detail:\s*(.*)$'
# Apply the regex pattern to extract the description text.
match = re.search(pattern, full_sentence)
if match:
description = match.group(1)
print(description)
else:
print("Unable to locate valid description.")
# Find the last occurrence of "."
#last_period_index = full_sentence.rfind('.')
# Truncate the string up to the last period
#truncated_caption = full_sentence[:last_period_index + 1]
# print(truncated_caption)
#print(f"\n—\nIMAGE CAPTION: {truncated_caption}")
return description
def get_caption_from_MD(image_in):
client = Client("https://vikhyatk-moondream1.hf.space/")
result = client.predict(
image_in, # filepath in 'image' Image component
"Describe precisely the image.", # str in 'Question' Textbox component
api_name="/answer_question"
)
print(result)
return result
def get_magnet(prompt):
amended_prompt = f"{prompt}"
print(amended_prompt)
client = Client("https://fffiloni-magnet.hf.space/")
result = client.predict(
"facebook/magnet-medium-10secs", # Literal['facebook/magnet-small-10secs', 'facebook/magnet-medium-10secs', 'facebook/magnet-small-30secs', 'facebook/magnet-medium-30secs', 'facebook/audio-magnet-small', 'facebook/audio-magnet-medium'] in 'Model' Radio component
"", # str in 'Model Path (custom models)' Textbox component
amended_prompt, # str in 'Input Text' Textbox component
3, # float in 'Temperature' Number component
0.9, # float in 'Top-p' Number component
10, # float in 'Max CFG coefficient' Number component
1, # float in 'Min CFG coefficient' Number component
20, # float in 'Decoding Steps (stage 1)' Number component
10, # float in 'Decoding Steps (stage 2)' Number component
10, # float in 'Decoding Steps (stage 3)' Number component
10, # float in 'Decoding Steps (stage 4)' Number component
"prod-stride1 (new!)", # Literal['max-nonoverlap', 'prod-stride1 (new!)'] in 'Span Scoring' Radio component
api_name="/predict_full"
)
print(result)
return result[1]
import re
import torch
from transformers import pipeline
zephyr_model = "HuggingFaceH4/zephyr-7b-beta"
mixtral_model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
pipe = pipeline("text-generation", model=mixtral_model, torch_dtype=torch.bfloat16, device_map="auto")
agent_maker_sys = f"""
You are an AI whose job is to help users create their own music which its genre will reflect the character or scene from an image described by users.
In particular, you need to respond succintly in a friendly tone, write a musical prompt for an music generation model.
For example, if a user says, "a picture of a man in a black suit and tie riding a black dragon", provide immediately a musical prompt corresponding to the image description.
Immediately STOP after that. It should be EXACTLY in this format:
"A grand orchestral arrangement with thunderous percussion, epic brass fanfares, and soaring strings, creating a cinematic atmosphere fit for a heroic battle"
"""
instruction = f"""
<|system|>
{agent_maker_sys}</s>
<|user|>
"""
def infer(image_in):
gr.Info("Getting image caption with Kosmos2...")
user_prompt = get_caption(image_in)
prompt = f"{instruction.strip()}\n{user_prompt}</s>"
#print(f"PROMPT: {prompt}")
gr.Info("Building a system according to the image caption ...")
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
pattern = r'\<\|system\|\>(.*?)\<\|assistant\|\>'
cleaned_text = re.sub(pattern, '', outputs[0]["generated_text"], flags=re.DOTALL)
print(f"SUGGESTED Musical prompt: {cleaned_text}")
music_o = get_magnet(cleaned_text)
return cleaned_text.lstrip("\n"), music_o
title = "Image to Music V2",
description = "Get music from a picture"
css = """
#col-container{
margin: 0 auto;
max-width: 780px;
text-align: left;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(f"""
<h2 style="text-align: center;">{title}</h2>
<p style="text-align: center;">{description}</p>
""")
with gr.Row():
with gr.Column():
image_in = gr.Image(
label = "Image reference",
type = "filepath",
elem_id = "image-in"
)
submit_btn = gr.Button("Make LLM system from my pic !")
with gr.Column():
caption = gr.Textbox(
label = "Musical prompt"
)
result = gr.Audio(
label = "Music"
)
with gr.Row():
gr.Examples(
examples = [
["examples/monalisa.png"],
["examples/santa.png"],
["examples/ocean_poet.jpeg"],
["examples/winter_hiking.png"],
["examples/teatime.jpeg"],
["examples/news_experts.jpeg"],
["examples/chicken_adobo.jpeg"]
],
fn = infer,
inputs = [image_in],
outputs = [caption, result],
cache_examples = False
)
submit_btn.click(
fn = infer,
inputs = [
image_in
],
outputs =[
caption,
result
]
)
demo.queue().launch(show_api=False) |